Chapter 7. The Glassy State and Glass Transition

» The origin of glass transition

1. Motion of small molecules; free volume and t
thermal expansion

Consider a model of a liquid that consists of n rather small
molecules contained in volume V. Each of these molecules will
occupy a volume v = V/n at some temperature 7. This volume
per molecule will consist partly of free space, since the molecules
will be vibrating about their €équilibrium position and will con-
sequently exclude other molecules from taking up positions too
close to them. In addition, there is the possibility that, under
their random thermal motion, some of the molecules may pull
apart in such a way as to open a void or hole in the liquid.

An average amount of free volume v,(= V;/n) may be as-
signed to each of the n molecules. As a crude model, assume
that each piece of free volume comes in a spherical shape of
radius & and that the energy of the free volume is just a surface-
tension energy 4meb®. To a first approximation, € may be con-




sidered the surface energy per unit area; numerically it would
then equal the surface tension of the liquid.
According to the Boltzmann distribution law, the chance that
a particular molecule will have associated with it a hole of
radius b will be proportional to exp (—4web?/kT). The average
size of a hole in the liquid will therefore be obtained from the
following expression:
f (35) b exp (—4web?/kT) db
vy = 2=0 (4.1)

f exp (—4mweb?/kT) db

0

After the indicated operations are performed,
vy = (1/6m)(kT/e)'® (4.2)
_This leads to thé following expression for the volume of a liquid
that has volume Vy at 77 = 0:

V="V+7V
= Vo + (n/67)(k/€)*> T (4.3)

Since the volume coefficient of expansion of a liquid (a) is by
definition (1/V,)(dV/dT),

o = (n/4w)(k/e)-2 T (4.4)

where V; has been taken as unity, and variation of n with tem-
perature has been neglected. Since the value « is usually re-
garded as essentially independent of 7, Eq. (4.4) may seem in
error because of the factor 7°-%; however, the value of & actually
does increase with 7" for most liquids. In fact, the expansion of
straight-chain paraffin hydrocarbons, to mention one instance, is
far better represented by an « varying as in Eq. (4.4) than by a
constant «. In addition, the numerical value given for a by
Eq. (4.4) is not unreasonable.

2. Motion of small momlecules: Jump fregency at large T




A molecule will be able to jump to a new equilibrium position
provided: (1) there is enough free volume available to make such
a jump possible; (2) the malecule has enough energy to break
loose from its neighbors and move into the hole; and (3) the
molecule is moving in the proper direction at just the right time
to enter the hole. Of these three factors, only the first will be
highly temperature-sensitive. Free volume can only be obtained
by opening a void in the liquid.. Thjs will require considerable
thermal energy to be localized in a small region of the liquid
if the hole is to be of molecular diménsions.

The energy needed for the molecule to break loose from its
neighbors and move into the hole will usually be only a small
fraction of the energy needed to- produce-the-hale ; Consequently,
this factor should be a much less critical function of the temper-
ature than is the first. Similarly, a molecule will ordinarily be
vibrating in its equilibrium cell with such a high frequency that,
if the first condition is satisfied and a hole is present, the molecule

'will eventually vibrate in the proper direction for entering the
hole. Therefore, one may approximate the true situation by
stating that the probability ‘that a molecule will jump to a new
egmhbrmm position is equal to a constant multiplied by the
probability that a Jarge hole is adjacent to the molecule. If the
Hole must' ‘have a volume 2* or larger if a molecule is to jump
into it, the fraction of the total number (n) of holes having
volumes larger than v* must be found. Since the probability ‘of
finding a hole of radius b is proportional to exp (—4meb*/k L),
the following expression results for the number of holes larger
than »* (assuming each hole to be independent):

-]

n f exp (—4mweb?/kT) db
3 (4.5)
f exp (—4web®/kT) db

Q




This expression may be integrated in terms of the error function.
Then, if the critical energy defined by
e* = 4reb™? ;
is much greater than k7, as it ordinarily will be, Eq. (4.5) yields
——— e
n(we*/kT)"? exp (—e*/kT) (4.6)
The jump frequency ¢ will be proportional to the quantity
given by expression (4.6) and will also be proportional to the
time required for the local liquid structure about a molecule to
change its energy appreciably. This time will ordinarily be
much shorter than the time between jumps, since it will depend
primarily on the vibrational collisions of adjacent molecules.
For this reason, it should not be highly temperature-sensitive.
In addition, the jymp frequency should depend upon various
geometrical factors mentioned previously; hence,

¢ = ¢oexp (—e*/kT) (4.7)

i

where the quantity ¢, defined by Eq. (4.7) is far less temperature-
sensitive than the exponential.

An order of magnitude for ¢, can be obtained by noting that
if the temperature is very high the exponential factor in Eq. (4.7)
becomes unity, and thus ¢, is equal to ¢. In this limit, there
should be a very large number of holes present; accordingly, the
jump frequency ¢ should be very close to the reciprocal of the

tinlf;_gccessar—y—fbﬁt-he—-rﬂele‘eul&te—erﬁss its cell. This value vlvill
be of the order of the vibration frequency of the molecule, which

will be in the range 10" to 10™. Since ¢ is always much smaller
than this, as will be shown later, it is clear that €* > kT at
ordinary temperatures.

Equation (4.7) may be substituted in Eq, (3.3) to give the
diffusion constant:

D = (¢¢6%/6) exp (—€*/kT)




3. Motion of polymer molecule segments at large T

Substitution of Eq. (4.7) in Eq. (3.8) yiclds the [ollowing ex-
pression for the segmental friction factor fy:

fo = (6kT/¢ed*) exp (e*/kT) (4.9)

This value can then be used in Eq. (3.11) to obtain the diffusion
constant of a polymer molecule:

D = (¢0?/6N*) exp (—€*/kT) (4.10)

Again it may be seen that an Arrhenius plot can be used to find
¢*, provided Eq. (4.10) is valid. Later in this chapter it will be
seen that Eq. (4.10) is often a poor approximation for polymers
unless €* is allowed to vary. The reasons for this are related to
the fact that the various pieces of free volume, that is, the holes,
were assumed to act independently of each other when Eq. (4.5)
was derived.

Similarly, Eq. (4.9) can be substituted into Eq. (3.16) to
obtain an expression for the viscosity of polymers:
7 = (pNkT/6¢0%) (R?/ M) N* exp@kT) 4.11)

This equation predicts that an Arrhenius plot of In (3/T) vs.
(1/T) should give a straight line with slope €*/k. As in the case
of Eq. (4.10), experimental data for polymers show Eq. (4.11)
to be applicable only if €* is allowed to vary with temperature. -

Typical Arrhenius plots for two polymers at various plasticizer
contents are shown in Figures 18 and 19. The apparent value of
€* at any temperature can be found from the slope of the curve
at that temperature. Obviously, the slope and therefore €* in-
creases as the temperature or the plasticizer content is lowered.
At very high temperatures or with large plasticizer contents, the
value of €* is close to 15 Kcal/mole for most polymers. The
valueof-e*beeomes—verylarge at temperatures near the glass -
temperature;—and-values in excess of 200 Kcal/mole have been
reported (38,48). Figure 20 shows the values for pure poly-
methyl methacrylate at various temperatures.




log (9/T)
. 0
e _ " Jose
al / 030
2 L
or 107T
2 3 4

Figure 18. The viscosity of poly-
styrene-dibenzyl ether solutions as a
function of temperature at the weight
fraction of polymer shown on the
curves (42).
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Figure 19. . The viscosity of a poly-
isobutylene of 134,000 molecular
weight' as a function of temperature
(47).
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Figure 20, Variation of ¢* (Kcal/mole) as a function of temperature for
polymethyl methacrylate (38).

4. Segmental motion near the glass temperature




There is good reason to believe that the energy term will not
vary too much with the mode of arrangement of the N holes
provided that ¥, and hence Vj, is held constant. This proceeds
from the following considerations. The surface energy per unit
volume of a hole, the energy density of a hole, will be
47a’e/ (%) Ta®, or 3¢/a; thus it is evident that small holes have
a higher energy density than large holes. However, it was indi-
cated above that small holes have a greater tendency to share
surfaces than do large holes, an effect that would lower the
energy density for small holes. It is hoped that these and other
similar effects will cancel each other, thereby resulting in the
same energy density for all size combinations of the N holes.
This assumption is actually made in the present approach to the
problem; consequently, the energy termr in the free energy is
ignored. - : : e

For the present it will be assumed. that the free volume V;

consists of n packets, one for each molecule or segment. The
correct treatment (51) does not assume these packets to be of
equal size. For simplicity, however, it will be assumed here that
each packet has the same size (vy) ; consequently, V; = nuy.

The chance that a particular molecule (or segment, in the
case of polymer chains) will have ¢ packets associated with it is

p(g) = [1 — A/m)2(1/n)2{nl/q!(n — 9)1}  (4.12)
This expression is derived through the following reasoning.
Consider n boxes into which one throws n balls at random. The
chance that a given ball will go into a given box is 1/n, while
the chance that it will notgo into this box is 1 — (1/n). Hence,
the chance that a particular box will contain ¢ balls is the
product of the chance that ¢ balls will go into the box, or (1/n)9,
and the chance that (n — ¢) balls will not go into the box, or
[1 — (1/n)]* % But this only accounts for one way of obtaining
q of the n balls in one box. There are n!/(n — ¢)!q! ways of
permuting n objects of which ¢ are the same ; therefore, the factor
containing the factorials also enters into Eq. (4.12).




Since n will be a very large number that will be considered to
be much larger than ¢,

[t — (1/n)]re = ! (4.13)

Also,
2l/gln — @)l = (a)(n — 1) « .- (n'— ¢ + 1)/q!
=~ nt/q! (4.14)
Hence, :
p(g) =e'(1/qY) (4.15)

If ¢ is not too small (and it will be seen later that it is of order
40 or larger), by Sterling’s approximation for the factorial,

p(g) = (1/2mg)"?exp [—g (Ing — 1) — 1]  (4.16)

But since ¢ = 2}/, where v} is the actual amount of free volume
associated with the molecule, one has the following for the prob-
ability that a molecule has a free volume v} associated with it:

ploy) = (v/2m0)"" exp [—Boj/v] (4.17)

where 8 = (In ¢ — 1) and unity has been neglected in compari-
son to 4.

For a molecule or segment to jump to a new position, more
than a critical amount of free volume (2*) must be associated
with it. Therefore, the probability that a molecule can jump
to a new position will be proportional to the integral of p(v;)
over v* < v} < ». As will be seen later, v;/7; is much larger
than unity in this range; and since 3 is a slowly varying function
of v}, as is the term in front of the exponential,

fp(v}) dv; = (constant) exp [—B%2*/v] (4.18)
Proceeding as in Sec. 4 of this chapter, one has the following
value for the jump frequency of the segment or molecule:
¢ = ¢oexp [—B**/vs] (4.19)
B* =1In (0*/v) — 1
It should be noticed that B* will not be too far from unity for

reasonable values of the ratio »*/v;. Since v* itself is not well
known, the quantity 8* may-for many purposes be considered

where

li




as unity.

A more exact treatment which does not assume uniform size
of the free-volume packets but which neglects surface-energy
effects has been carried through by Cohen and Turnbull (51).
Their result is essentially the same as Eq. (4.18), but with a
somewhat different value for 8* Therefore Eq. (4.19) may be
used with confidence, provided that $* is considered to be a
constant approximately equal to unity.

Equation (4.19) can be substituted in Eq. (3.3) to obtain the
diffusion constant for small molecules, with the result that

D = ($0%/6) exp (—B*v*/v;)  (small molecules) (4.20)

This equation has been tested for various small-molecule liquids
and found to give reasonable results even at low temperatures.

Similarly, Eq. (4.19) can be used in Eqgs. (3.8), (3.11), and
(3.16) to give the following expressions applicable to polymer
molecules:

fo = (6kT/$od?) exp (B*0*/2y) - (4.21)
D = (¢o0%/6N*) exp (—B*0*/vy) (polymers) (4.22)
1 = (pNAT/6¢ob?) (R?/ M) N* exp (B*0*/v)) (4.23)

In these equations, the quantities ¢y, 8, ¥, and o, refer to polymer
segments, not to the molecule as a whole, of course. A discussion
of the applicability of these equations to actual experimental
results will be deferred until after a consideration of the glass
temperature.

5. WLF equation

Consider first Eq. (4.23) for the viscosity of a polymeric liquid.
Ali the factors except the quantity (7'/¢) exp (B*v*/us) are
essentially independent of temperature. Even the factor 77/¢o
will be relatively constant in comparison to the large changes
usually obsérved for viscosity as a function of temperature.
Consequently, for a given polymer system and to a good approxi-
mation,

n = Bexp (B*v*/vy) (4.24)




Equation (4.24) has been known for some time to be an
exceptionally good representation for the viscosity of molten
paraffins as well as many other liquids (56,57). It is often called
the “Doolittle equation,” since it was Doolittle who first pro-
posed it as an empirical representation. Of course, its use
depends upon the proper choice of free volume 2, , which will
now be investigated. «

Consider the viscosities of a liquid at two different temper-
atures, 77 and 7,. From Eq. (4.24),

m/n: = exp [(B*0*/vp) — (B*0*/vp)] (4.25)

Or after taking logarithms of each side,
In (m/12) = (B*0*) [(1/21) — (1/0p)] (4.26)
If a molecule or chain segment has a total volume z, associated

with it at 73, it is reasonable to define the free volume at 7; by
the following relation (53):

Upp = Un1 + aUl(T-‘g = Y“]‘) (4.2?)

where « is the expansion coefficient for the gross liquid minus

the expansion coefficient for the glass; that is, « = a; — .
This merely says that the free volume increase as the temperature
is raised from 7) to 7% is equal to.the thermal expansion in
excess of the van der Waals’ expansion of the glass. Hence it is
assumed that .the free volume effective in promoting molecular
motion is only that portion which is in large enough packets so
that it does not equilibrate readily at low temperatures. The
reason for taking « as being a@; — «, rather than «; will become
apparent when the results for the variation of glass temperature
with molecular weight are discussed in the next chapter.

In any event, if Eq. (4.27) is substituted into Eq. (4.26), one
has after some rearrangement,

In (qu/1:) = B*o*/vp) (T2 — 1)/l (on/vie) + (T2 — T3)]
(4.28)

This relation is very interesting because it is of the same form as
a semiempirical relation proposed by Williams, Landel, and
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Ferry (the so-called “WLF cquation”) to cxplain the tempera-
ture dependence of viscosity and other rate processes in glass-
forming liquids (49). They found that, if 7} is taken to be the
glass temperature of the material, then Eq. (4.28) agrees with
experiment in the temperature range 7, < 7' < 7, + 120, pro-
vided that

(B*L’*/Uﬂ) = 40 and (vﬂ/v;a) =52 (429)

One therefore has the following equation, denoted the WLF
equation,

In (ne/n) = 40(T — Ty)/[52 + (T = T,)]  (4.30)

where 7, is the viscosity at the glass temperature. This equation
has been tested against data for many noncrystalline ‘polymers,
as well as for other glass-forming liquids. Typical of these are
silicates, boron trioxide, n-propanol, glycerol, and many others
(49). They all appear to obey Eq. (4.30) very well within the
range T, < T < T, + 120; therefore it may be concluded that
the molecular ideas leading to Eq. (4.28) are probably valid.

It is interesting to examine the meaning of the relation in
Eq. (4.29). If one takes B* = 1, then z, = 0v*/40; or, ap roxi-
molecule to jump as is found on the average for each segment
at the glass temperature. Hence, great aggregation of free
volume must occur at low temperatures if a segment or molecule
is to be able to move. Also, from Eq. (4.29), v, = (52)(2,0).
Since @ = a; — a, is about 5 X 10~* per °C in the case of most
liquids, vy, = 2,/40. In other words, about ¥4, of the volume at
the glass temperatur€ is free volume. It sho o be noticed
that-since o, was shown above to be about 2*/40, it appears
that the hole needed for a molecule or segment to jump must be
about equal to the size of the molecule or segment itself. This
observation is entirely reasonable, of course.

Although Eq. (4.30) is nearly universal for glass-forming
liquids, discrepancies do arise. First, the equation begins to de-
part from experiment if the temperature is raised too far above
T,. Each liquid behaves somewhat differently at these high




temperatures. Such deviations are .not unexpected, since the
relations of Eq. (4.29) cannot be expected to be completely
temperature-insensitive. It is well known that the expansion co-
efficient of a liquid will vary with temperature; accordingly, a—
and hence the quantity 52—will change at high temperatures.
Also, there is no absolute assurance that B*»* will be rigidly
constant as a function of temperature. In addition, the quantity
preceding the exponential in Eq. (4.24) is certainly not fully
constant as assumed.

There are also indications that some materials would agree
better with Eq. (4.29) if slightly different constants were used.
This modification is not completely unreasonable from a theo-
retical standpoint; however, the difficulty of making measure-
ments at temperatures near 7, still leaves much doubt as to
whether or not these constants should change somewhat. Since
a 10° temperature change near 7, can cause the viscosity to
change by a factor of several hundred, experimental difficulties
become quite influential near 7,. Also, as will be seen later,
small amounts of impurity greatly influence the exact value

measured for 7.
Since measurements near 7, are difficult to make, Williams,
Landcwmﬂﬁw,Wratum

be tWence a temperature T, that is
roug %Ww This new reference temper-
ature Eq. (4.30) becomes

In (n./n) = (20.4)(L — To)/[102 + (T — Ty)]  (4.31)
They further suggest that 7, be obtained empirically by fitting
the equation to the experimental data. However, if T, is known,
it would appear that the relation 7, = T, + 50 will be accurate
enough for most purposes.

Before concluding this section, it should be pointed out that
Eq. (4.26) has been tested for several monomeric liquids that are
not ordinarily regarded as glass-forming systems (51). Molten
metals, for example, are found to conform reasonably well with

Eq. (4.26). In addition, a simple extension of Eq. (4.26) can be |

used to predict accurately the variation of molecular motion as
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6. Chemical structure and Tg

The presence of highly polar groups along the polymer chains has the effect

of increasing the intermelecular forces-which putt-the chains-eloser together,
'{' ‘his reduces the free volume. P elatively high

glass temperatures. However, a_more imy ortant factor is the steric eﬂ'cct
of the chain substituent groups. Sti =

Free rotation of the chain segments, increase T, whereas flexible side groups,

which serve to hold the chains apart, free thclr motions and decrease T, . The
interplay of these - o5 ;

Table 10.1. These have been collected from the work of Wﬂey and his
colleagues, who used the refractometric method of determining T, , so that
the values 1n the table represent a strictly comparable series. This list of glass
temperatures is by no means ustive, but it suffices to illustrate the effects
of the size and polarity of the main types of side groups on the transition
temperatures. RE - Thafies

TasLE 10.1
Glass temperatures of various polymers

Polymer \ Te°C ‘ Ref.
Polybutadiene J —85 ‘ 22
Polyiscbutene ; =77 1 22
Natural rubber =15 72
Neoprene : -50 i 22
GR-S (78% butadicne, 22% styrene) -67 22
Copolymers of butadiene with acrylomtrilc ' |
(7 varies linearly with % acrylonitrile from ‘ J
0% acrylonitrile to | —85 23
52% acrylonitrile) | -16 | 23
Polyst | 750 25
Polyvinyl acetate ‘ 29 24
Polymethyl acrylate l 0 25
Polyethyl acrylate =23 2
Poly-n-propyl acrylate —51 25
Poly-n-butyl acrylate —63 | 22
Polycetyl acrylate 35 (m.p.) 25
Polymethyl methacrylate 72 25
Polyethyl methacrylate 47 25
Poly-n-propyl methacrylate 33 25
Poly-n-butyl methacryiate l 17 25

* 100°C is a more frequently accepted value for polystyrene of high molecular weight.

13



At the top of Table 10.1 is a group of elastomers which have very low
glass temperatures. It is noticeable that, apart from neoprene, they are hydro-
carbons which have very weak intermolecular forces. Polybutadiene, which
has no side groups at all on the chains, has the lowest T, whereas polyiso-
butylene and natural rubber, both with methyl side groups, have slightly
stiffer chains and transition temperatures approximately 10 degC higher than
polybutadiene. In neoprene the methyl side groups of natural rubber are re-
placed by chlorine atoms. These are slightly larger than the methyl groups and
have much stronger dipolar forces. It cdn be seen that they increase T, by
almost 25 degC.

Polystyrene is a hydrocarbon polymer with only weak van der Waals
forces between the chains. Nevertheless the bulky nature of the side groups
makes the rotation of the chains very difficult and polystyrene is a hard
plastic with a glass transition at 100°C. The side groups m polyvinyl acetate
have a similar arrangement and about the same molecular volume as the
phenyls in polystyrene. They have however an internal flexibility and despite
their extra polarity obstruct the rotation of the chain segments less than

(i) Tg of copolymer

In many cases a plot of T, against composition by weight for a series of
copolymers lies below the straight line joining the transition temperatures of
the two homopolymers [32, 33, 34]. By assuming that each type of momomer
unit retains its characteristic free volume in the copolymer above T, and
using the iso-free volume criterion for the glass transition, it is easy to derive

[34].
e
T (w,.;I—ng)[T,I-F T,,] ©

Here w; and w e weight fractions whose homo-
polymers have transitions at T, and T, expressed in °K, and B is a constant

for the pair of monomers. B is specified by the theory but is difficult to pre-
dict numerically; it is however never far from unity. The success of eq. (6) in

describing the data is illustrated in Fig. 10.8. When B is exactly unity, eq. (6)

reduces to the very simple, but non-linear form
5 1T, = wy/T,+wy/T, ™
The data for many pairs of vinyl monomers fit eq. (7) fairly well.
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Fic. 10.8 Glass temperatures Ty of copolymers of polychlorotrifiuoroethylene with poly-

vinylidene fluoride plotted against the weight fraction w; of the latter. The curve is the

theoretical eq. (6) with B = 1-75 (see Wood [29]). (Data from L. Mandelkern, G. M. Martin
and F. A. Quinn, Journal of Research of the National Bureau of Standards [34].)

(i) Molecular weight and Tg

1T, = 1T +A/M (8)

where T} is the glass temperature of polymer of infinite molecular weight.
A is a positive constant, which was 0-515 in this case.

With the same definition of free volume as has been used in this book and
with the assumption that all molecular weight fractions have an equal
free volume at their glass temperatures, Fox and Flory [20, 43] have derived

T,=T*-K/M ©)

where K is a positive constant. The deviation between eq. (8) and eq. (9) is
noticeable only at low values of M. At large M it was found that plots of T,
against 1/M and of 1/T, against 1/M were both linear, within the experi-
mental errors, (see Fig. 10.9).
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Fic. 10.9 Plots of 1/T; and T, against reciprocal molecular weight M for polystyrene,
representing tests of eq. (8) and eq. (9) respectively.
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(i) Branaching, crosslinking and Tg

The idea that chain ends introduce extra free volume also enables the effect
of branching to be foreseen, Imagine two polymer molecules of molecular
weights M, and M, . If they are coupled end-to-end they give a molecule of
weight (M, + M,) with two chain ends, but if one molecule is T-joined to the
other to form a branched molecule of weight (M, + M) this has three chain
ends. In general a linear molecule with (w—2) branches attached along its

length has e chain ends. If the weight is M s tem-
perature is given by a simple modification of eq. (9) [11]. This is
T, = T2 - Ko/2M (10)

Thus branching lowers T, below the value it would have for an unbranched
mlr_ymﬂiofthm‘mdﬁcmuﬂght It W -
ments of T, and M with eq. etermine the d anching. In this
connection it is noteworthy that it is the number avcragc mofecular weight
which is appropriate in egs. (9) and (10).
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" When a network polymer is prepared by using a small amount of divinyl
comonomer two cases have to be distingished. If the divinyl compound is very |
different in structure and molar volume from the main vinyl monomer, the |
product has to be regarded asa copolymer If however the monom
similar the mer and the
iso-free volume theory applied [44]. The result for fairly low degrees of Cross-
linking is

T, = T? — K/M+ K 1y
where K, is a constant for the particular polymer, » is the number of cross-
inks per gram 0 e the molecular weight i -1i €
gevered. This equation shown to fit the data for polystyrenes cross-
linked with divinyl bcnzene [45] and f m_xnitm&mchmmss-hnk:d
_jj;h_eﬂ_lgmng_g];[deuncthamylate [46].

For very much :--s degrees of cross:-linking Ueberreifer and K

plots of v against T to of the

also found, -usmg
transition tegion (range of curved v m of

(iv) The effect of diluents on Tg

The effect of adding a Iow molecular weight substance to a polymer is to
lower its glass temperafure. This effect has been well known for a long fime
and is\egplgited in practice when relatively involatile diluents such as
dibutyl phthalate or tricresyl phosphate are mixed as plasticizers with
polyvinyl chloride to give flexible products.

By postulating that the free volumes of the separated polymer and diluent
are additive in the mixture and that the free volume fraction has a critical
value ¢, which is the same for the pure polymer, the diluent and their mixtures
at their respective glass temperatures, it is a relatively straightforward matter
to derive a relation between T, and composition [48]. The latter is most con-
veniently expressed in terms of the volume fractions of polymer v, and
diluent v, .

Referring back to eq. (1) it can be seen that the free volume ¢, associated
with ¥,, cm® of polymer at the glass temperature 7, of the mixture of polymer
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and diluent is

¢y = p[¢¢+(“l-¢v)(Tl"Tw)] (13)

Similarly for v, cm?® of the diluent the free volume ¢ is
bs = Vel byt 0Ty —Tod] (14)
since mw@ujwmmummwuﬂ

apgroximation, be regarded as contributing extra free volume. Thus for

{ cm® of the mixture the free volume fraction at T, , i.e. ¢, , is given by

_-.nu;a--_ e - :::--:.u":5.=;'

T,= V5 Too(t = %) +Valoake (15)
vn(al = ﬁ,) +V04

By setting («—a,) equal to 4-8x 10~ deg™ for all polymers [28], K%ﬂg.znd_

Bueche [48] showed that eq. (IS excellent representation of the vari-
ation of T, with composition of the systems polystyrene +diethyl benzene and
polymethyl i (Fig. 10.10).
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Fic. 10.10 Plot of glass temperature Ty against volume fraction of polymer vp for mixtures
of polymethyl methacrylate with diethyl phthalate. The curve represents eq. (15) with
wg = 10 % 10-¢ and Tya = — 65°C asestimated from viscosity measurements. (Data from
E. N. Kelley and F. Bueche, Journal of Polymer Science [48].)
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