Chapter 6. The Nature of Viscoelasticity

I. Classification of the mechanical states of polymers

1. Creep experiment: At constant stress, the stain of the specimen was
recorded as a function of time.

2. Relaxation experiment: At constant strain, the applied stress was
recorded as a function of time.

Il. Model of viscoelastic behavior

1. Creep experiments q-
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Because polymer chains have a

distribution of relaxation time, %
E(t) 1 —t/r, E| 71
—==> —\l-e"" !
5, "2 be")
where n=1,3,5...N. F3 s
£(t) =0, f J(logr)(1—e*)d logr Ex s
;o-

where J=1/E is the elastic

complianceand J =7/ E E.
is the retardation distribution

function.
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Figure 37. A multiple Voigt-Kelvin model.
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[11. Molecular interpretation of stress/strain behavior

The atoms or molecules in 2 condensed phase at equilibrium occupy
states o ree energsr v Vi rat:mg about oertam_w
the potential energy fi I g
bw_g_mﬂecules Tn an unstressed matenal these mean pOSlth]lS are also
minima in the potential energy fields. Speaking genera]ly, equivalent or almost
equivalent potential energy minima are distributed in a fairly regular way
throughout the substaiice. In a crystal this regularity extends over great
distances on the molecular scale and is more complete than in a liquid or
amorphous substance, When 2. stress i apphed the mean p031t10ns of the
molecular vibrations.arc.meved-+ thy™ : ; ok

are~SOmewhat msplawd from the potentaal energy minima. Thus work is
¢ energy 1s stored 1n the substance and | is recovered when the stress
; --'. L PUSLLUNES G T SLIL ITCE-E eEpV=thinima=hit

is removed The new egui




““Tall the equilibrium positions were occupied by atoms or molecules the
stress which would be required to move all the atoms in a crystal plane
simultaneously over the intervening maxima in order to produce a shearing
motion between two planes would be truly enormous. Normally stresses
produce only very small displacements from the potential energy minima
and it is this fact which accounts for the almost linear stress/strain behaviour
so commonly observed and whlch is dcscrlbed by Hooke’s law. It is always
fOLllld that even the mo st.pex! als w

quired theoretlca]ly to raise all the
Therr free=c 5

This obsezvatlon is explamed by the fact that no substances have struc-
tures so perfect that all the Tree- -energy minima are occupied. There are

always some vacant minima and also_some atomns situated in betwceu

mmlma m what are caﬂed dtsiocat:ons

matenal, whether decreasm the ure or

increasing the temperature. It js the atoms in dislocations which are mainly
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FiG. 9.3 Energy profiles between potential minima for molecules in a liquid (@) unstressed

and (b) with shear stress.

In an unstressed material, although molecules are constantly jumping
from one equi]ibrium position to another, no direction of motion is preferred.
Consequently there is no net movement of the centre of mass when averaged
oW‘mﬁnfm—a—’macmscopw sample. Indiyidual
molecules do move mmﬁwm aths which consist of
a Sequence of random jumps an which correspond mathematically with the

statistical configurations of a ireely jointed chain (cf. Chapter 7). However no
macroscopic flow or deformation of the sample takes plaqe_._hj




When a stress is applied each molecule is subjected to a tiny aVerage force
fin the direction of stress. Let the average length of a molecular jump be ¢
and, for simplicity, only _]_umps parallel to the a@m@mnsﬂefedr_
When a jump is made in the stress direction the force does work f& on the
molecule whereas a jump in the reverse direction needs work fé to be done
against the force.

If ¢ is the height of the energy barrier midway between adjacent equili-
W&e stressed state a molecule has to acquire therm-
ally 2 minimum energy (e—3f0) in order to jump forwards. The energy
decrement 3/ enters because this amount of work is done by the applied
force when the molecule moves from its equilibrium position up to the
h1ghest point of the barrier. Similarly to _]u.mp backwards the thermal
activation energy required is (¢ +4fd). The eﬁ"ectw : ternal energy profiles 1p
the unstressed and stressed conditions are illy : g 9 3. The effect
oT a5 applied stress is therefore to lower the ek energy of activation for a
molecule to jump into a neighbouring hole in the stress or forward direction
and, at the same time, to raise it for a jump in the opposite or backward
direction. The chance of a molecule jumping forwards into a hole under stress
is thus greater than the chance of one jumping back and so a net movement

occurs in the stress direction.

Eyring and his collaborators by using the theory of absolute reaction rates to
give a unified theory of molecular motion in liquids [4]. If the number of
times per second that a molecule jumps from one 5931@_111311 posntlon to

another i1s denoted by p, in the unstressed state, then =5

kTv,
[@;ﬂ ;E)"%] exp (—e/kT) (1)
where & is the height of the energy barrier in Fig. 9.3, m is the mass per
molecule, and v, the free volume per molecule. g may be defined by reference
to the partition function of the liquid when that function is based on the
smoothed potential approximation of the cell model. In general terms vy is the
volume in which each molecule in the liquid is apparently quite free to move
without interference from other molecules.
— Under an applied shear giving a force f per molecule, which tends to dis-
place it laterally with respect to its neighbours, the rate of jumping in the
forward direction p, becomes

o : ,
b= | e | exp (e ift) et @
= po exp (J3/2KT)




Similarly jumps in the oplgosite direction take place at a rate

Po = Po exp (—f3/2kT) 3)
The ratio of these two rates is
Ps/Ps = exp (fO/KT) @

It is dependent on the nature of the liquid only through J which ordinarily
will be comparable with the molecular diameter. The net rate of movement
of a molecule in the forward direction u is given by

u = &(p;—py) = Opo [exp (f8/2kT)—exp (—f0/2kT)] )

ie. u = 26p, sinh ( f8/2%T) (6)

In most practical circumstances f6<kT so that the exponentials may be
expanded and only the first order terms retained. Thus eq. (5) becomes

2 24, —#
el ®
The activation energy ¢ is made up from two contributior;%we
i ake 2 e molecule to jump into, &, , and the work

able it to

to free the mo Hiare environ Nt T
jump, & . latively non-polar liguids. Also &g,
is related tothe energy of vaporization per molecule, &,,, . Powell, Roseveare

and Eyring [5] have produced convincing experimental evidence to support
this molecular mechanism for flow by showing that for a wide range of
normal liquids the energy of vaporization bears an almost constant ratio,
between 3 and 4,-te~theenergy of activation for viscous flow.

all these molecular segments do not have to jump simultaneously. Provided
the jumps of separate segments pr ein the direction of stress the
centre of mass of the molecule moves progressively forward. It must be
appreciated that in the unstressed material segments are constantly jumping
from occupied sites into holes which appear nearby but no direétion o#u?np-
ing is preferred so that on an average no bulk movement takes place. In this

way all the jons.may.be.explored by each chain

cule.

When a stress is applied, a small preference is introduced in favour of
jumps in the stress direction. However the number of forward jumps in
excess of the backward jumps is usually small compared with the total
number._Thus the randomness of ion_i ely

disturbed by the net movement of the centre.of mass.efthe molecule.




Three types of deformation may therefore follow the application of stress
to a polymer sample. These are

(a) an instantaneous shift of the ents from their potential. ener
minima

(b) a diffusion of the rclatwely free chain segments by a prep nderance of
micro-Brownian jumps in the stress direction

(¢) a breaking down of the chain entanglements under stress and the
formation of new ones in unstressed situations.

The four phases of mechanical behaviour differ in the relative rates and
magnitudes of these three responses.
In the glassy state the free volume is very I

In the leathery state the diffusional motlons are very slow compared with
(a) though rapid compared with the breakdown of entanglements. In addition
the net movement due to (b) is appreciable during the time scale of the
observations.

-

IV. The dynamic of network response, creep
1. The sping-bead model

Figure 34. A portion of the chain model used in the text. The sections
between beads are gaussian submolecules.

0 I 2 3
Figure 35. A chain model based upon the model of Figure 34. This sim-

pliﬁcd model is mathematically equivalent to the original model insofar as
unidimensional motion is concerned.




As shown in Chapter 2, a gaussian coil behaves in many ways
like a spring with spring constant 34 7/R?. [See ESI (2.7), where
R*is the mean square end-to-end distance.] Thus, if the mean
square end-to-end length of a subchain is designated 42 an ap-
plied force F, will stretch the segment an equilibrium amount
Ax, which is given by . :
' F, = (3kT/a® Ax (6.4)

Looking now at the ¢’th bead, one sees that the total x-directed
force on it will be the difference between the x-component ten-
sions in the ¢ and (7 + 1) segments. Therefore the following
expresses the net x-directed force on the 2’th bead:

g €(X£+1 = -xi) = g(x!" = .JC£_1)

or
Foi = exipn — 2ex; + exi (6.5)
with ¢ = 3kT/a>
17
in the absence of friction forces, the force in Eq. (6.5) is simply
equated to the mass times the x component of the acceleration:
mE; = e(xipr — 2x; + Xi) (A9.1)
There are N equations similar to, Eq. (A9.1) for the total N
beads of the chain. The beads on the two chain ends have
slightly different equations of motion, since they are not con- _
strained on one side: - e ) - fl"lll s et ¥a- 2.3’. L )
and b0 S5 ElL ™ 3 Akt = €L0X1—%)
miy = 8(.K‘N — ."CN_.l) (A92)
The solutions of these equations are of form " )w = e (Xy-AXw-)
Xin = exp (jwat) cos (ik,) (A9.3)
with = ' 3 Gin
¢ = 3kT/a? E 7 Rl
and

; wa? = 2¢(1 — coskn)/m ks = nw/N
The quantityjis vV —1, and_n takes on all the integer values from

zero to N.




The simplest mode of motion consists of a pure translation of
the bar in the x direction. Of course, the frequency for this mode
of motion is zero, and hence w, = 0. This is not an important
mode of motion in the present instance, since the molecule will

As 0<n<<N w” = 2e(1—coanﬂ]/m = (GKT ](ZSinz(nﬁIZN))/ m

aZ
3KT
=22 (022 IN?)/m
a
\ o \\_,_, : /-
el \ X \_‘/n=2
(a) (b)
N /N NLAN
n=3 n:4\‘/
(c) (d)
_Figure 36. Various resonant modes of motion of a chain. 19

N N 12
So [ Nx 3KT .
: X=» X _ =)» ex — | —— | t|cosik
Pl p’(NaJ[mj “

The above the equation does not consider the intermolecular interactions,
such as the viscous force.

Even if friction forces act upon the beads, the above equations
can be handled in a straightforward way to obtain the motion of
the system. This is most easily done by the method of normal
coordinates. Mathematically-the present problem is nearly iden-
tical to the problem of the vibration of NV equal masses suspended
at equal distances on a string in a viscous medium. Although the
solution to this problem is well known, it is a rather lengthy and
involved computation. For this reason, only the result will be
given here. SN e '

In terms of the{normal coordinates gn , the displacement of
the #’th particle is given by

N ,
x: = T [2¢./(2mN)?] cos (ikn) (A9.4)
n=1
The normal coordinates are to be determined from the dif-

ferential equation

gn + (fo/m)gn + @n’gn = F, - (ﬁ9.§)

—




* What are the normal coordinates?

m{x]+ f,[x]+e[A]x]=[F]
where
EIEEY R N E R 7 F, ]
X % X -1 2 -1 0 F
RIS I T I N [Fl=|
. 0 0 O -1 2 -1 .
RAY B | Xn | 00 0 0 -1 1_N+1,N+1, _FNJ
Let,
m[x]+ £, [x]+ elc” [eIx]= [F]
21

this, note that

41 = [€7IC]

where [C] is also a matrix of order z X (z + 1) and has the form

Elhse=] 0 OF Ao e

0 1 =1 O N L

0 0 e s
eIk e S I o Nl
.................. s 0
[ 0 L]

and B | 0 0 ) R A )
=2 1 0 (1)t e

0-—=1 1 O i

(eRlis Al At v b L REIRG
.................... =4 1

ot o e 0 .__1._

N,N+1

N+1,N
2

11



mlc]x]+ f,[e Lz +elc]e Jelx]=[c]F]
mic]x]+ f,[cIx]z +e[RIe]x]=[c]F]

where [R] = [C][CT ] is called Rouse matrix

A P e 7

74 T P

.................... S Ao i 0
.................... i S| 35 L
.................... 0 o1 2|N,N

There exists the marix [Q] as that
o IRIpl-[a]. o Io]=11]

23

where

o

[Al-

. oo})I

o

0 O 0
0 0 O NN
mlep™ [ellx]+ f,lp [cIx]+elo [RIcTx]= o [e]F]
mle [e]x]+ f.lo t [c]x]+e[alle * [eIx] =|o t [c]F]
Let,  [e]=lp[c]x] . [a]=le™Jc]x]. [al=lp[c]X]
[5]=lpc]F]

so,  mla]+f.[a]+e[A]a]

Ay
0

0 0
0 A |

3] 2




since | [R]p]=[A]. [olle* [RIp]=[p]A]=[A]e]
[RIp]=[Ale]. (R]-[A]e]=0

Thus, 2—=Dpn— P12=0 -
—Pa+ (2 — D@z — @5 =0
—@se+ (2 — Doy — @aa =0
SO OB RO DA OO (h)
~Gea1t 2 — DPea=0
where @,;; is the ijth term in [¢].
In order to solve the set of equations gwen above, note that they
all have the same form: /

_ = Pmat 2—DPn — P21 =0 ()
with the conditidn that Pl ttans
Po = Puy1 =0 ) )

Equation (i) can be treated and solved as a difference equation.
In operator notation it is just

[-E7'+ 2—2) — Elg,,=0 (k)

25

where the operator E displaces a function in the positive direction
and E* in the negative direction, i.e.,

EQpn = Qi1
Elg, = 9.,

Now to solve equation (k), assume that the solution has the following
form:

P = e @
where f is a constant and « is a function to be detcrmmed Insertion
of equation (I) into equation (k) results in v 22 5

pe[—c+2—-NH—e1=0 _.c  (m

In order for equation (m) to yield nontrivial results, it is necessary
that

Sl gyt s

26

13



or

2—21 €&+
T > = cosh & (nl

Equation (n) is satisfied by two values of «, namely +o and —a,
since cosh(+«) = cosh(—a). Thus, the solution to the difference
equation also must be satisfied by two functions (i.e., fer™ and
fe=™*). The general solution is then just

3 @ = Ppe™ + Pyfe ™ (0)
where the P’s are constants. Since

sinhz = (&* — )2
and
coshx = (e® + e )2

we can have the following equivalent general solution:

P = My sinh(ma) + M, codh(me) (p)

where the M’s are constants. For m = 0, equation (j), the boundary
condition, demands

Po=0= M, ()
and

Pt = 0= sinl{(_m + 1) J;(,Jk (r)

since M, is a constant. But the value of the hyperbolic sine is zero if

the argument is an integral multiple of (im), where i=+/—1.
Therefore,

(o= ipm| (41, p=1,2,3,:..,% (s)
Combination of equations (s) and (n) finally gives the desired result:
4, = 2 — 2 coshlipm|(z + 1)]

= 2{1 — cos[pr/@@ + DI}
= 4 sin®[pr/2(n + 1)] (7-53)

where p = 2 U
La

14



SR SIRICAITE (] AREN

T A
[qn]+ﬁ°[qn]+a)n2[qn]:[3n] .......................... 8
It should be noted that
N
X = [an /(2mN )l’z]cos(ikn) ........................ @
n=1
3, =3 [2F G t) (2mNYZJoos(iK, ) v 3)

i=0

As a simple example of the use of these equations, consider the response
of the chain to a force f applied at each end of the chain so as to stretch it:

F(O,t)=—1f , F(N,t)=+f all the other values of F are zero.

29
Substitution of these values into eq 3 yields
3,=0 forneven, 3J,=-4f/(2mN)"? forn odd.
Since the viscous forces will be assumed large enough so that all inertial
effects will be negligible, the solution of eq 1 is simply
qn = (Sn /wnz)(l_exp(_tlrn)
with r=flo'm . of :ﬁ(nzﬁlez)/m
Substitution to eq 2 yields the following expression,
N
X = [2/2mNY2 |, 1 0,7 )[L—exp(~t/ 7, )]
n=0
and
. 2
Xy == [2/2mN)? |3, 1 0,2 L-exp(-t/ 7,)]
n=0
30

15



xv — xo = (FNa?/3kT)(8/7%) Z (1/n2)[1 — exp (—t/74)]
W=l N sl(6B)
where
Tn = foN%?/372% Tn?

The meaning of this equation is as follows. When the tensile
force F is applied to the ends of the molecule, all odd-numbered
modes of vibration of the molecule are excited. These are the
modes for which the chain ends move in opposite directions, as
can be seen from Figure 36a and ¢. Since the applied force is
not trying to move both ends of the molecule in the same direc-
tion, the even-numbered modes are not excited.

TN e PNyt o
n=|\-'.. '\—'/ﬂ'z
(a) (b)

AN “NEALT
WA I ATE N
(c) (d)

31

Figure 36. Various resonant modes of motion of a chain.

After a long time, the molecule will have reached an equilib-
rium elongation, and the exponentials in Eq. (6.8) will be zero.

Each mode of response of the molecule will have contributed an

amount proportional to 1/2? to the elongation; hence it is clear
that the first few modes of motion are by far the most important
for this type of chain motion. For example, the fifth mode will
contribute less than 4 per cent of the total elongation.

Another interesting fact brought out by Eq. (6.8) is that the
response or retardation times (7,) for the various modes of mo-
tion are not at all uniform. In general, the higher modes of
motion show the shorter retardation times. This characteristic
is represented by the relation

o= (1 /n?)m (6.9)

which means that the initial response of the chain just after the
load has been applied will be chiefly the result of the response of
the very high modes of motion. Notice also, from the definition
of 71 in Eq. (6.8), that the retardation time is proportional to

foN?. Consequently, the retardation times will be large for long'

chains in highly viscous surroundings.

16



Since the gross rubber sample must elongate in proportion to
the individual chains, the final result is that

(AL/L) = (a/3vkT) Z (8/m*n*)[1 — exp (—t/7n)]
pie 13,5, . i N (610)
where o is the force per unit area and v is the number of network chain
In unit volume.

since the tensile compliance of the material D(f) is merely
(AL/L)/w, \
3kTD(t) = (8/7%) Z n2[1 — exp (—t/7n)] ;
' n=-1,55 ., N (6.11)
Equation (6.11) differs from the result obtained for the Kelvin
spring-dashpot model in an easily visualized way. The result
for the Kelvin model given by Eq. (6.3) is just a single term of
Eq. (6.11). This means that the actual freely orienting chain
does not behave like a single Kelvin element; instead, the chain
33

Elongates like a series of many spring- E Yl
dashpot elements. This can be seen to ! :
be true from a consideration of the series

of Kelvin model shown in Figure 37. o

The model system in Figure 37 will

elongate in the following way, since E

each element is subject to the same 5 )15
stess and the elongations are additive.

ylo=Y E l-exp(-t/z,)] i
E. 2
n=1,3,5,...,N N3 ‘1N
;cr

Figure 37. A multiple Voigt-Kelvin model.

AA

34
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with 7, = 7n,/E,. This equation for the compliance ( y/c) of the
series of Kelvin models can be put in exactly the same form as
Eq. (6.11) for the freely orienting chain model if the following
replacements are made:

M/En = (1/0%)(foN?a?/37%T) (6.13a)
and
1/E, = (1/n%)(8/37*wkT) (6.135)
which in turn means that 7, is given by
M = vfoN?a?/8 — (6.13¢)
ISt ey

These relations show that each Kelvin element has the same
value for 7, but the various spring constants increase as n®. In

addition, it is interesting to notice that Eq. (6.13¢) for the v1scous :
element in the Kelvin model is equal, except for a factor of ,ﬁ,}
to the viscosity of a polymer without entanglements given. in

Eq. (3.16). Even though the series of Kelvin elements shown in
Figure 37 duplicates the behavior of an actual freely orienting
chain, it is clear that the individual elements have little relation
to the physical elements composing the chain. They do, how-
ever, represent the contribution of the various individual modes
of motion of the chain to its over-all elongation.

35

« From the free draining model, the viscosity of polymer melt
or concentrated polymer solution can be expressed as

—2
n:(pNj LA NI (pNJ NF, = va?N>f,
36 | M 36 36
or
cN 1(cN)\—2 1
- Nf, =—| == |r "Nf, =—ca?N?f
n=1,= [36j[ ] o 36(Mjro 0 3666 o

Where p is the density, N is the Avogadro number, v is the number of
polymer chains per unit volume, n, is the viscosity of solvent, c is the
concentration, and ¢ is the number of polymer chains per unit volume
in solution.

50 m, _36_
n 8

N ©

36
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2. Comparison with the experimental data

It is now of interest to compare the response of the simple
Voigt-Kelvin model as given by Eq. (6.3) with the observed
elongation curve for the rubber shown in Figure 30. This com-
parison is made in Figure 33, where the value of 7 has been

)‘E/a"

1.0

0 2
log (t/7)

Figure 33. The compliance curve for the rubber of Figure 30 (expt) com-
pared with the response predicted from Eqgs. (6.3) and (6.11).

37

» Two sources of the error present in Rouse model

1. The assumption of freely-jointed segment between two adjacent
beads is rather crude.

2. The assumption of affine deformation of the network to derive the

eq 6.11 is unrealistic, i.e., the sample as a whole elongated in the
same way as the individual chains elongated.

38
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3. The motion of network junction
SKTD(t) = [L-exp(-t/2,)]+ Y 5" (1-exp(-t/7,5™))

vil<T Z,b’” (l—exp(—t/rl,b’z"))

D(t) =D, (t)+

where

1
D, (t) = —— (1—exp(=
o (D) :m(l exp(-t/z,)

o f,N%a?
b32%KT
n=1, 2,...,0

39

values of B8 are shown in Figure 39. The cases of 8 = 10 and
B — oo are unrealistic, since a tetrahedral crosslink can at most
have 8 = 3. However, the 8 — <« case is included, since this is
equivalent to the result given in Eq. (6.11). If B8 is infinitely
large, no motion of the crosslink will occur, since chain 1 in
Figure 38 would have to pull an infinite number of chains along
with it if the junction were to move.

2.0

3VKkD(t)

1.0

-4 o, 2
log (/%)

Figure 39. The lines represent compliance curves predicted by Eq. (6.14),
using the values of 8 indicated. Data for the natural rubber of Figures 30
and 33 are shown (O) together with data for crosslinked polyethyl metha-
crvlate (@) (75).

20



4. The reptation model to correct the entanglement effect

We may start by considering a coiled chain trapped
in a network. This is a simpler case than the case of
a thermoplastic melt since non-trivial entanglement
effects are avoided. We may think about the system
in only two dimensions (Fig. 6.15), with a coiled (C)
chain and a great number of surrounding network
chain segments which are obstacles, denoted O;. The
C chain is not allowed to cross any of the obstacles.
It can, however, move in a worm-like fashion along
its own axis. This motion was given the name
reptation by its inventor Pierre Gilles de Gennes
(1971). 1t is convenient to think that the C chain is

trapped within a tube. This commonly used term "

(b)

Figure 6.15 (a) Schematic description of the reptation
process considering a single chain (C chain) surrounded by
numerous obstacles (). The C chain cannot move much
laterally due to the obstacles. (b) Fundamental reptation
process with the translative motion of a defect along the 42
chain leading to a longitudinal shift of the reptating chain.
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mass. A similar equation can be derived for the tube
diffusion coefficient (D,,,.):
D,

Dl‘ube = _j\} (6.45)
where D, is a constant which is independent of
molar mass. The time for the tube renewal process
(T,en) can then be derived from the diffusion distance
which is equal to the chain length (L):

L> L*M
Dtube DO

T =

ren

(6.46)

The chain length is proportional to the molar mass,
ie.:

Teen = Tooy " M (6.47)

where 70 is a constant.

43

of a step strain. The subsequent relaxation of stress
was then calculated under the assumption that repta-
tion was the only mechanism for stress release. This
led to an equation for the shear relaxation modulus,
G(#), in the terminal region. From G(#), the following
expressions for the plateau modulus, the zero-shear-
rate viscosity and the steady-state recoverable com-
pliance are obtained:

G, oc M° (6.48)
Ho oC M® (6.49)
Jo o MP° (6.50)

Experimental data indicate that #, increases more
strongly with M, #, oc M>* (Fig. 6.13) and the
predicted viscosity values are in fact greater than the
experimental. The predicted values for J. are lower
than the experimental values. As pointed out by, for

44
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Chain Conformation of PXT in Semidilute
Solution

2
1k
- 2l
cl £ i
2k
Poly(xylylene tetrahydro- B ‘
3.0 2.5 2.0 5 0
thiophenium chloride) log c, ] l "
22
F d (1949 @ e .
uoss proposed ( ) _ b - m
ﬁ_ A 5: 1.8}
C 1+ B\/E % 1.6}
De Gennes proposed (1976) 1.} .~
Neeg = C_l/ 2 = 30 :-‘Zs .-2'_0 s o - 0.5

Theoretical Model to Predict the Chain
Conformations of PPV Precursor and cp*

Assumption:

1. The chains were treated as a
succession of blobs, which
carry a g-number of monomers;

2. The blob size & is equal to the
mesh size of the solutions in o

the semidilute regime; g
3. E«R Q
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Chain overlapping started at c,*=N/R3, where
N is the number of monomers in a chain, and R
is the end to end distance of the chains.

-
. \
! ( 4
1
1
!

47

Modified deGennes’ Scaling Arguments

From Rouse equation, 1 —2
N=1 =25 Pl N* 1,
where n, is the viscosity of solvent,
p = moles of polymer chains/volume ~ c,/N,

Ii’% = Nifgis the number of blobs per chain,

f, =3rn,é
g~c,e’

48
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Modified deGennes’ Scaling Arguments

The rewritten Rouse equation, n—n N

0 ~
x

By using the formula of correlatiz'f’f’Iengﬁc[a;p Cp§3

I
*
S~

where § is the mol cwar yveight independence.
For rodlike chains, R=Na. We obtained

-1/2
For ideal Gaussian chains, R=N2a. Wieobt&Agd
77red ~ NCp

49

Modified deGennes’ Scaling Arguments

1.0

. ™S
By assumingR = N'a , Ideal Gaussian flexible chain:
v=05n=1
0 7(3\/—2}
Theqg = I\ICp ~ Ncp vl 05r Real free-coil chain:
V= 0.6;n=0.25
c
or n+2
= ool Rodlike chain:
3n+3 V:1;n:-0.5

-0.5 1 1 1 \

0.5 0.6 0.7 0.8 0.9
50

1.0
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Chain Conformation of PXT in Solutions with NaCl Salts

Agqueous Solutions

16l n=-0.36,v=085 o salifiee
a Cs=5(10"M)
n=-022;v=0] o Cs=1(10°M)
4L eeg | Geaa0'M
n=-007,v=0.69 .
a Cs=4{10°M)
S 8
=11} 12¢ n=-001;v=0.67
=]
-
10}
0.8 . . . .
28 24 20 0 -l6 -l2
loge,
-

log n,

L0

08}

0.6

Methanol Solutions
o Salt-free
Cs=5 (107
n=-025v=078 | ° 10°M
o Cs=1(10°M)
» C=4(10°M)

n=-019;v=0.74

Cs=4 (10" M)

n=-0.07,v=0.69

n=007,v=067 5
&

25 20 5 10
log c
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R (x107°A)

Cs (x10° M)

Methanol

5 10 15 20

Cs' (107 M)
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V. Time-temperature superposition principles

T iﬂ” (1— exp(-t/ 11,82”))

Since 1
D) =D, (t) +
(t) =D, (t) 3K

It shows that 3vkTD(t) = Y(t/m1) (6.15)

The function on the right-hand side of Eq. (6.15) involves no
quantities other than 8 and #/7,. Since B is a constant of the
network system, it is apparent that 7°D({) is a function of only
one variable, /7).

Moreover, f N 292 NZ2a? ) f
Tl = > = > -0
37°KT 377K )T

1
When temperature was increased fromTto T', 71 = a; 7,

where a;<1, is known as the shifting factor.
53

2
Since f:ﬁ and D=¢§, f—6KT

°°D 6 ° po?

From the last section, ar is by definition the ratio of the response
time 7 at temperature 7" to the response time 7 at temperature
7. If 7 is arbitrarily selected as the glass temperature 7,

A== T;/Tm (617)
But from the definition of 7y,
Gl fé TaffDHTr (6.18)

In addition, making use of the relation between jump frequency
¢ and f, given by Eq. (3.8), one finds

ar = ¢,/¢’ (6.19)
exp {B**[(1/2) — (1/v0)1}
So,

Ina;, = p*v *[Ufg_usz—ﬁ*l)*[ av, (T'-Tg) }

Uy v Uy vy, +av, (T'-TQ)

I
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K,k
P g))

Ina, = Ufg
9 4 TTg

aug

which is an alternate form of the WLF equation by using Tg as the
reference temperature,

—40(T'-Tg))

Ina., =
Y 524T'-Tg

If the reference temperature is above Tg, such as Tg+50°C,

_ Cl(T '_Tref ))

Ina. =
T C,+T-T,,

What are C, and C, ?

55
3IKTD(t) =y (In(t/z,))
When temperature was shifted to reference temperature, the equation
can be modified as
3KT, D) =y (in(t/a;_z))=y(in(t/z)-1na; )
(T/217)D(1)
o o o o 42C
PSPCRRE I s e ks
ooooc"zoo-zwc
o e e
s o © TG o
(=]
Gl o -56°C
o
o o
& o
o = o -62°C
lggooO‘?c’l_ llogt(secl
| e 3 4
56

Figure 40. Compliance curves obtained for a vulcanized rubber at several
tempegatures.
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D(t)x10 5

log t (sec)

=0 S o i B RRSE RS e e T

gure 41. The composite compliance curve at 217°K for the rubber shown
" in Figure 40. The units of D(t) are cm?/gm.
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VI. Boltzman superposition principle

The Boltzmann superposition principle is one of the
simplest but most powerful principles of polymer physics.1® We have
previously defined the shear creep compliance as relating the stress
and strain in a creep experiment. * '

y(t) = 0pJ(0) (2-23)

The stress o, is applied instantaneously at time equal to zero. One
might, however, imagine an experiment where the stress oy is applied,
not at ¢ = 0, but at some other arbitrary time, perhaps #;. Then
equation (2-23) would become

y(t) = o J(t — uy) (2-24)

Consider now the application of two stresses o, and o, at the times
t=0 and f=u respectively. The Boltzmann superposition
principle asserts that the two stresses act independently and the
resultant strains add linearly. This situation is shown in Figure 2-9.
Thus /

(1) = ooJ(t) + 01t — 1) (2:25) 58
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or for a more general experiment consisting of discrete stresses
03, O, . .- G, applied at times # = u;, uy - - * u,,

wt) = 3 0 (t — up) o
. i=1

The summation of the individual ¢,’s would represent the total stress
so that in considering a continuous stress application, o(z), the

increment of applied stress is just the derivative of o(¢). Replacing
the summation by an integration and remembering that u is the
variable results in

i
p(t) = % J(t — u) du (2-27)
\..I""—-————...--"‘!-..__________
The limits of integration are taken as — oo since the complete stress
history contribut in and ¢ since it is obviOus

that stresses applied after 7, the time of observation of the strain,

can have no effect on the observed strain.
59

In a completely analogous manner one may derive an expression
relating the stress a(¢) to the strain in a sample which has experienced
some continuous strain history given by the function y(r)

~
a(1) =J ala(—l'o G(t — u) du (2-28)

— a0 u

Equations (;-2?) and (2-28) are often given in an alternative form
which we will now derive. Integrating equation (2-27) by parts

fw dv = —J‘v dw +f'd(wv) (2-29)

dv = (3{;{:&)) du . w=J({t — u)

u

where

one obtains

W) = J(t — u)o(u)

¢ i e
_m-—f_ o(u)a—J%‘—”)du (2-30)

(¥19)
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We assume that o(— o) is equal to zero. Setting 7 — u equal to @, a
new variable, and observing new limits of integration due to this
variable change gives

0 {u
le2] L ] )
70 =000 + [ "ot~ 02 Das )
0 & a A=
P
In an analogous manner, equation (2-28) becomes
0G(a)
da

o) =60 +[ W% Qi @)
EX. 0
As a specific example of the use of th
consider a material with a creep compliance given by the function

J@) = J, # ty @)
where J, represents the recoverable deformation and # is the vis-
<osity. Let us calculate the strain y(¢) when this body is subjected to
the linear stress function o(¢) shown in part (a) of Figure 2-10; (i) at
the time ¢, during the Toading and (1i) at the time 1, after the loading
has ceased. : 1

kt' e
: I

glm l
13 1 1

7 e ' (a)

i The stress can be written as
—0LtL0 a(t) =0
O == o(r) = kt
Making use of equation (2-27) one has

th U

() = L hk[.f, e ;ﬂ di

62
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and carrying out this simple integration leads to
2

kit
y(t) = ktyJ, + 2—1 (c)
Ul

Remembering that kt, is just the total applied stress at the time
1, yields

y(t) = "(fl}l:-fr + i:l (d)
2n

Equation (d) then gives an expression for the strain at fime t, in a

ody whose creep compliance is given by equation (a) when it is
subjected to a linear loading pattern starting at time zero. Note that

f; must occur during the stressing period.

63

ii We will now calculate the strain after the stress addition has
stopped. Again we can summarize the stressing history

Cei=r 20 a(t) =0
G<r<t o(t) = kt
.t <h, o) =kt

Now equation (2-27) becomes

£ s ol LG 3
y(t2) =f k[J,. S —] du (e)
° )
Again, this is a simple integration which gives the result that
: Fi et
y() = o(e)| 1, + 2 — - 0
n 2y

It is interesting to carry out part (ii) of this example using the
more widely used equation (2-31) instead of equation (2-27). One
must use the new variable in the integral so that the strain history
must be introduced in terms of this transformed variable rather than
in terms of the normal laboratory time. Writing equation (2-31) for
part (ii) of the example gives
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oJ (a)

Y1) = J(O)a(ts) + f ollts —5) ©

In laboratory time, there was no stress 1mposed between the time
t=—0o0 and ¢ = 0. In terms of the variable a, however this
corresponds to @ = oo and a = /, for when g = ®, 1, —a = —©
and when a = f,, t, — a = 0. This is a consequence of the variable
change used to derive equation (2-31). Application of this equation
without changing variables will necessarily lead to an incorrect

result. Completing the stress summary in the usual way
(Because t, -u=a)

—0<Lt<0 o(t) =0 Q> >
Dt o(t) = kt ta>a>ty—t'
=l o(t) = kt’ th—t'>a>0

From equation (a
JuaLone) a(a) 1
== (h)
da n

Substituting equation (h) and the strain history into equation (g)
yields
ta—t'
k(”d Wil R TR
ta—12" 7

Integration and cancellation gives (f) as indeed it must.

y(rz‘;*-m(rwf

VII. Relationship between the creep compliance and the stress
relaxation modulus

First consider the calculation of the LaPlace transform of the
function

F(t) = at (2-34)
where a is a constant. ;

Substitution into equation (2-33) gives

L(at) mf e at dt (2-35)
0
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which upon integration yields

L(af) = < (2-36)
P
Thus it is clear
L(t) = ;%2 L(aF(1)) = aL(F(t)) (2-37)

Next consider the LaPlace transform of the function F(t — a),
where F(z) = 0 for # < 0. Again, substitution into equation (2-23)
gives
L(F(t — a)) =J. e F(t — o) dt (2-38)
0

Now letting r — @ = «, one has

L(F(t — a)) = e““”fme"”’F(x) dr — .e‘“”L(F(r)) (2-39)

Lastly consider the transform of F'(#). Proceeding as above
L(F'(1) =f e P'F'(1) dt (2-40)
0
Integration by parts yields
L(F'(t)) = e ”F(O)|§ +P r e "F(1) dt (2-41)
CJo

The second term is just the definition of the LaPlace transform of
F(1): evaluation of the first term at the limits of integration gives

L(F'(1)) = —F(0) + pL(F(1)) (2-42)
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One additional result will be needed which will be derived in
Appendix 2 of this chapter. This is Borels theorem which states

L( f Bt =0 Fe) dr) = LEO) AR®) 49

Using these results we can now derive the relationship between
the creep compliance and the stress relaxation modulus,
The LaPlace transform of equation (2-31) yields

dJ(a)

L(y(1)) = J(0) L{a(1)) + f ey f ot~ a) o dadi (244)
0 0 a

or
L(y(1)) = J(0) L(a(1)) +J.m ?—';(ﬂjme“"’ ot — a)dt da (2-45)
0 a Jo

Making use of the result derived in equation (2-43) gives

L) = 4O L) + | f o M@ da| L) 246)
0 da '

The term enclosed in brackets, however, is nothing except the
LaPlace transform of the derivative of J(r). Thus we may apply the
resuit obtained in equation (2-45) to get

Liy(0)) = J(0) L(a(1)) + L(o(0)) [PLU(1)) — HO)) = pL(o(8)) LU()
(2-47)

Next, transform equation (2-32) into LaPlace space in the same
manner to obtain

L(o(1)) = G(0) L(y(1)) + L(y(0) [pL(G(1)) — G(0)]
= pL(y(1)) L(G(2)) (2-48)

—

Equations (2-47) and (2-48) give

L _ Le@iLum (2-49)
r
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This is the solution of the problem in transform space. We have a
direct relationship between the transform i

the modulus. This solution must now be returned to real space.
Mm of Borel’s theorem, equation (2-43) and the result

derived in equation (Z-33) gives ‘the final result

ﬁ\g}’ t = l G Ii=de (2-50) -
A :

i ) .
This is the convolution integral which is the relationship between
the creep compliance and the stress relaxation modulus. It 1s exact

ends only on the applicability of the uper--

positior—principle.

VIII. Retardation and relaxation time spectra

For a large number of Voigt elements in series the response
would be

D(t) = y/go = Z (1/E,)[1 — exp (—t/mw)] ~ (7.22)

Notice that the contribution of each Voigt element to the equilib-
rium compliance is merely 1/E,; in other words, each retarda-
tion time 7, is associated with a compliance 1/E,. One is
therefore led to adopt a terminology in which one speaks of a
spectrum of retardation times, each of strength 1/E,.

It frequently happens that the retardation times become so
closely spaced and so numerous that the sum of Eq. (7.22) can
be replaced by an integral. Then,

D) = f (1/E)[1 — exp (—t/7)] dr (7.23)

Usually data are plotted as a function of log (¢/7), and it is
therefore more convenient to express the integral in terms of In 7.
Since

dilnig)i= o=Ydr
then

D(t) = f (r/E)[1 — exp (*i/"f')l d(ln 1) (7.24)
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where it is understood that all values of 7 are to be covered by
the integral.

The quantity 7/E in Eq. (7.24) is the contribution of retarda-
tion times in the range d(In 7) to the creep compliance. It is
often referred-to as the “retardation spectrum’ and is repre-
sented by the symbolism L(7). If this terminology is used,

D(t) = f L(m)[1 — exp (—t/7)]d(In 7) (7.25)

It is also common to define L(r) by an equation similar to
Eq. (7.25), but with D(t) replaced by the shear compliance J(¢).
Since J(t) = 3D(t) for rubbers, the two definitions differ by a
factor of 3. The definition used will usually be clear from the
context.

By the same token

E(t) = f H(r) exp (—1/7) d(In 7) (7.38)

where H(1) = 7E(r). The quantity H(r) is called the “relaxa-
tion-time distribution function,” or the ‘‘relaxation spectrum.”
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