Experimental Investigation of the Si-Ge-Ti Ternary Phase Diagram and Diffusion Behaviors

ABSTRACT

In this thesis, the Si-Ge-Ti ternary isotherm at 900 °C was determined by using metallography, x-ray diffraction, and electron microprobe. The main objective is to provide the necessary thermodynamic information for designing contact materials in SiGe devices. In the second part of this thesis, the diffusion behaviors of Si-Ge-Ti system were studied. The objective is to provide the kinetic information for understanding the reactions between Ti and SiGe.

In this study, it was confirmed that at 900 °C TiSi₂ and TiGe₂ form a continuous solid solution with the C54 crystal structure. It was also shown that, other than Ti(Si_{1-y}Ge_y)₂ and Si_{1-x}Ge_x, there is not any binary or ternary phase within the Si-Ge-TiGe₂-TiSi₂ trapezoid. Between the Ti(Si_{1-y}Ge_y)₂ and Si_{1-x}Ge_x single-phase field is the Ti(Si_{1-y}Ge_y)₂-Si_{1-x}Ge_x two-phase region. The tie-lines for the Ti(Si_{1-y}Ge_y)₂-Si_{1-x}Ge_x two-phase region were determined. The tie-lines tilt slightly toward the TiSi₂ and Ge corners presumably because the enthalpy of formation for TiSi₂ is slightly more negative than that of TiGe₂. In other words, at equilibrium the silicon to germanium atom ratio is larger in the Ti(Si_{1-y}Ge_y)₂ phase than in the Si_{1-x}Ge_x phase (x>y). The isotherm determined here was then used to explain the complicated phenomena observed during the reaction between Ti and Si_{1-x}Ge_x. A strategy of forming stable contact to SiGe device was devised based on the thermodynamic information obtained in this study.

It was also confirmed that at 900 °C and 1100 °C Ti_5Si_3 and Ti_5Ge_3 form a continuous solid solution with the D8₈ crystal structure. The lattice parameters of $Ti_5(Si_{1-w}Ge_w)_3$ were determined. The homogeneity ranges of $Ti_3(Si_{1-v}Ge_v)$, $Ti(Si_{1-q}Ge_q)$, $Ti_5(Si_{1-p}Ge_p)_4$, and $Ti_6(Si_{1-r}Ge_r)_5$ solid solution were also determined.

In the second part of this thesis, Ti/Ge binary diffusion couple experiment at 800 $^{\circ}$ C was performed. Two of the three thermodynamically stable phases, Ti₆Ge₅ and TiGe₂, were identified. However, Ti₅Ge₃, which is

also stable at 800 $^{\circ}\text{C},$ was not detected. Reasons for Ti_5Ge_3 to be missing were discussed.