Solar Energy Materials and Solar Cells
An international journal devoted to photovoltaic, photothermal and photochemical solar energy conversion

Volume 95, Issue 8, August 2011
ISSN 0195-6701

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
High-efficiency inverted polymer solar cells with solution-processed metal oxides

Yu-Hong Lina, Po-Ching Yanga, Jing-Shun Huangb, Guo-Dong Huangc, Ing-Jye Wangb, Wen-Hao Wub, Ming-Yi Linb, Wei-Fang Suc, Ching-Fuh Lina,b,*

a Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC.
b Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC.
c Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC.

\textbf{Abstract}

The selection of carrier transporting layer in polymer solar cells is an important issue because the nature and direction of carrier transport can be manipulated by inserting different functional layers in the device structure. In this work, we report an efficient inverted polymer solar cell (PSC) system based on regioregular poly(3-hexylthiophene) and a n-type acceptor, bi-indene[C\(_60\)]. With a pair of metal oxides and the insertion of TiO\(_2\) nanorods electron collecting layer between the ZnO thin film and the active layer, the device efficiency can be greatly improved. The contact area between the active layer and the electron collecting layer, as well as the thickness of active layer, can be increased with the incorporation of TiO\(_2\) nanorods. As a result, photocurrent can be enhanced due to more absorption of light and more charge separation interface. In addition, the larger contact area and the crystalline TiO\(_2\) nanorods provide a more efficient transporting route for the carriers to the cathode. The most efficient device demonstrated shows a high power conversion efficiency of 5.6\% with the inverted structure.

\textbf{1. Introduction}

In recent years, polymer solar cells (PSCs) have emerged as the potential candidate for renewable energy due to the possibility of achieving large area, flexible, and light weight devices with low fabrication cost [1,2]. The bulk-heterojunction PSCs based on regioregular poly(3-hexylthiophene) (P3HT) and fullerene-derivative (6,6)-phenyl C\(_{61}\) butyric acid methyl ester (PCBM) have been reported to reach a power conversion efficiency around 5\% [3–5]. The most typical device configuration for this blend system employs an aluminum cathode and a poly[(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-modified indium–tin oxide (ITO) or fluorine doped tin oxide (FTO) anode. However, PSCs of this conventional configuration suffer from instability problems. The low work function aluminum is easily oxidized in air, and the acidic PEDOT:PSS would degrade the device performance due to the corrosion to indium–tin oxide (ITO), both of which make the device lifetime very short [6–8]. An approach to solve these problems is to use the inverted structure of polymer solar cells by modifying the ITO electrode with an electron selecting layer and replacing the easily oxidized low work function metal electrode by a higher work function one to change the nature of carrier transport [9–12]. Device stability utilizing this inverted configuration can be significantly improved [13–15].

Metal oxides can serve as the transporting functional layer in either cathode or anode. Cathode buffer layers such as zinc oxide (ZnO) [11,16], titanium oxide (TiO\(_2\)) [12,17], and cesium carbonate (Cs\(_2\)CO\(_3\)) [10,18,19] have been reported to possess electron selecting and hole blocking functions, and all of them can be solution-processed. On the other hand, metal oxides such as nickel oxide (NiO) [20], vanadium oxide (V\(_2\)O\(_5\)) [10], and molybdenum oxide (MoO\(_3\)) [16] can function as hole transporting and electron blocking layer in the anode side. However, most of these oxides are deposited by vacuum technique, which is rather expensive and therefore not preferable. To further reduce the fabrication cost, solution-processable anode-side metal oxides layer applicable in polymer solar cells have been developed, such as the sol–gel derived copper oxide (CuO) film [21] and the interlayer casted by colloidal dispersion of V\(_2\)O\(_5\) and WO\(_3\) [15,22]. These solution-processed metal oxides had been discovered to be able to effectively reduce the device leakage current, thereby improving device characteristics. In addition, because of the easy processing with the solution, many conditions could be quickly experimented for optimization. Finally, by sandwiching the organic layer between these metal oxides, direct

*Corresponding author at: Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan, ROC. Tel.: +886 2 3366 3540; fax: +886 2 2364 2603.
E-mail address: clin@cc.ee.ntu.edu.tw (C.-F. Lin).

0927-0248/\$ - see front matter \textcopyright 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.solmat.2011.05.005
exposure to air can be avoided, resulting in much better device stability.

In this work, we report a very high efficient inverted structure solar cell. It consists of two electron selecting oxide layers, as well as two hole transporting and functional layers, which were all deposited using the solution-process. The ITO electrode is modified by the ZnO sol–gel thin film, and on the top covers the TiO$_2$ nanorods array. This TiO$_2$ nanorods layer not only provides larger interfacial area with the organic photoactive blend, but also forms an efficient transporting pathway for electron, thus greatly enhancing the device performance. For hole transport, in addition to the use of solution-processable colloidal suspension of NiO nanoparticles, an additional hole transport ink, developed by Plextronics Inc., is used as the hole transporting layer (HTL) at the anode side. This HTL is based on sulfonated poly(3,4-ethylenedioxythiophene:poly(styrene-sulfonate) (PEDOT:PSS, Clevios LP1000, Hummers), as well as a n-type acceptor, bis-indene[6,6,1]cymantrenyl (Plexcore® HTL) were provided by Plextronics, Inc. This system has achieved a novel n-type acceptor, bis-indene[6,6,1]cymantrenyl (Plexcore® HTL) have high power conversion efficiency of 5.6% with and later 6.0% power conversion efficiency (PCE), and later 6.0% power conversion efficiency (PCE) with J$_{SC}$ of 11.3 mA/cm2, V$_{OC}$ of 0.79 V, and FF of 63% under AM 1.5 G (100 mW/cm2) irradiation intensity when paired with our novel solution-processed metal-oxide interlayer.

2. Experimental

The Plexcore® PV2000 photoactive ink and the Plexcore® hole transport ink (Plexcore® HTL) were provided by Plextronics, Inc. This system has achieved a 5.4%, and later 6.0% power conversion efficiency in conventional device structure and has been certified by the National Renewable Energy Laboratory (NREL). The TiO$_2$ nanorods with diameter of 5 nm and length of 30–40 nm were synthesized by the hydrolysis of titanium tetraisopropoxide as previously reported. Nickel(II) oxide nanopowder (99.8%) was purchased from Sigma-Aldrich. The monoethanolamine (99.5%), the chelating agent and the 2-methoxethanol (99%), the solvent for sol–gel solution were purchased from Merck and Alfa Aesar, respectively.

The device configuration is shown in Fig. 1. Devices were fabricated on the pre-cleaned ITO coated glass substrate (7 Ω/sq). The ZnO sol–gel thin film (~50 nm) was formed by spin-coating a 0.5 M zinc acetate solution in 2-methoxyethanol and then being dried and then the nanorods under 2000 rpm for 40 s. The samples were heated at 140 °C for 10 min in nitrogen atmosphere. Then TiO$_2$ nanorods dispersed in pyridine of different concentrations (1.5, 3.0, 3.6, and 6.0 mg/ml) were mixed and fully by the nanorods. Therefore, the device performance can be improved. However, when the concentration of TiO$_2$ nanorods further increases, nanorods start to pile up unevenly onto the ZnO layer, resulting in increase of the contact resistance and thus leading to a lower photocurrent and PCE. To sum up, the above results suggest that adding small amount of TiO2 nanorods between the ZnO and active layer in inverted structure can serve as an effective method to improve the device efficiency, and the details of the device performance are summarized in Table 1. The average value (solid squares) and standard deviation (error bars) of the parameters were derived

3. Results and discussion

The effects of applying TiO$_2$ nanorods of different concentration as additional electron collecting network on device performance are investigated. Firstly, all the devices incorporated with TiO$_2$ nanorods show enhancement of device performance, as shown in Fig. 2. The most apparent improvement of devices lies in photocurrent and PCE. Secondly, there is an optimal concentration of TiO$_2$ nanorods. The device fabricated with the 3 mg/ml solution shows the best performance among all the devices, with PCE of 5.6%, V$_{OC}$ of 0.79 V, J$_{SC}$ of 11.3 mA/cm2, and FF of 63%. As the concentration of TiO$_2$ solution increased from 1.5 to 3.0 mg/ml, the ZnO surface can be covered more evenly and fully by the nanorods. Therefore, the device performance can be improved. However, when the concentration of TiO$_2$ nanorods further increases, nanorods start to pile up unevenly onto the ZnO layer, resulting in increase of the contact resistance and thus leading to a lower photocurrent and PCE. To sum up, the above results suggest that adding small amount of TiO2 nanorods between the ZnO and active layer in inverted structure can serve as an effective method to improve the device efficiency, and the details of the device performance are summarized in Table 1. The average value (solid squares) and standard deviation (error bars) of the parameters were derived

![Fig. 1. Schematic diagram of inverted-type device configuration incorporating TiO$_2$ nanorods as additional electron collecting layer.](image)

![Fig. 2. J–V characteristics of devices with different concentrations of TiO$_2$ nanorods under 100 mW/cm2 AM 1.5 G light illumination. All the devices incorporated with TiO$_2$ nanorods show enhancement of device performance and the optimal concentration of TiO$_2$ nanorods is 3 mg/ml.](image)
from six individual devices for each TiO$_2$ concentration, as shown in Fig. 3. All the characterizations followed are with 3 mg/ml TiO$_2$ nanorods solution in device fabrication.

The atomic force microscopy (AFM) of top surface of ITO/ZnO and ITO/ZnO/TiO$_2$ nanorods are examined and shown in Fig. 4. In the case of ITO/ZnO, the top surface of ZnO shows a root mean square (RMS) roughness of 7.0 nm and its roughness range is approximately 10 nm; on the other hand, in the case of ITO/ZnO/TiO$_2$ nanorods the RMS roughness of the top surface becomes 12.6 nm and roughness range is about 40 nm. This greatly increased roughness is attributed to the stacking of TiO$_2$ nanorods onto the ZnO film, providing a much larger interfacial contact area between the photoactive layer and the inorganic electron collecting layer. The enlarged interfacial area combined with the high mobility of the crystalline TiO$_2$ nanorods facilitates the electron transporting and collecting. Electron dissociated from the donor/acceptor interface and migrating to the extended inorganic boundary can quickly be collected and channeled to the cathode through the nanorods. These two effects enhance the carrier collection and reduce the series resistance, improving the device characteristics.

Fig. 5(a) shows the absorption spectra of the devices under investigation. The absorption spectrum of glass/ITO/ZnO only device, which barely absorbs light in visible region, was taken as reference. According to the spectra, the device shows an absorption enhancement in the characteristic peaks of semi-crystalline P3HT after incorporating the TiO$_2$ nanorods. This suggests the thickening of the active layer on the top of nanorods, for the TiO$_2$ nanorods as-synthesized in this work can only negligibly absorb light of wavelength above 400 nm and therefore will not contribute to absorption, as shown in Fig. 5(a). The cross-sectional FESEM images, as shown in Fig. 5(b), also demonstrate that the active layer thickness of the device has increased from 200 nm (without TiO$_2$ nanorods) to 280 nm (with TiO$_2$ nanorods), while the TiO$_2$ nanorods layer is very thin compared to the active layer. Clearly, the rougher surface can retain more blend solution during the spin-coating process, thus thickening the active layer. However, simply increasing the thickness of active layer cannot improve the device performance. A device without TiO$_2$ nanorods and with active layer thickness about 280 nm using a spin speed of 500 rpm was also fabricated for reference. Although the J_{sc} of the device is raised to 11.0 mA/cm2, FF is lowered to 53.4%, leading to a poorer 4.11% power conversion efficiency. This phenomenon is related to the limitation of active layer thickness imposed by the insufficient carrier mobility in organic film. A thicker organic film results in an increased series resistance, which derives from the increased charge recombination, and therefore degrades the device performance. The above result shows that the device efficiency cannot be improved solely by the thickening of active layer without adding TiO$_2$ nanorods.

Table 1

Summary of device performance with different TiO$_2$ NRs concentrations.

<table>
<thead>
<tr>
<th>Concentration (mg/ml)</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No TiO$_2$ NRs</td>
<td>0.74</td>
<td>10.2</td>
<td>58</td>
<td>4.4 (\pm 0.2)</td>
</tr>
<tr>
<td>1.5</td>
<td>0.75</td>
<td>11.8</td>
<td>57</td>
<td>5.1 (\pm 0.1)</td>
</tr>
<tr>
<td>3.0</td>
<td>0.79</td>
<td>11.3</td>
<td>63</td>
<td>5.6 (\pm 0.1)</td>
</tr>
<tr>
<td>3.6</td>
<td>0.78</td>
<td>11.5</td>
<td>57</td>
<td>5.1 (\pm 0.1)</td>
</tr>
<tr>
<td>4.5</td>
<td>0.78</td>
<td>12.1</td>
<td>53</td>
<td>5.0 (\pm 0.2)</td>
</tr>
<tr>
<td>6.0</td>
<td>0.80</td>
<td>10.6</td>
<td>55</td>
<td>4.7 (\pm 0.2)</td>
</tr>
</tbody>
</table>

Fig. 3. Photovoltaic parameters of devices with error bars (standard deviation) for (a) PCE, (b) V_{oc}, (c) J_{sc}, and (d) FF.
There is another possible reason that accounts for the performance enhancement of the device after adding TiO$_2$ nanorods. In the regime of organic/inorganic hybrid solar cells, P3HT/TiO$_2$ heterojunction system has been reported to have efficiencies above 2\%\cite{31}, where the organic P3HT acts as the donor material and the inorganic TiO$_2$ serves as the acceptor material. In our device configuration, the TiO$_2$ nanorods/P3HT interface can also contribute additional photocurrent to the solar cell. This can be clearly seen from the room temperature PL spectra of the devices with and without TiO$_2$ nanorods, as shown in Fig. 6. From the figure, the photoluminescence intensity of TiO$_2$ nanorods incorporated device is significantly lowered compared to the one without TiO$_2$. This so-called PL quenching evidently indicates that TiO$_2$ nanorods could provide additional charge separating interface at its boundary with P3HT/bis-indene[C$_60$] blend, thereby improving the device performance.

Finally, device stability has been examined. The devices were not encapsulated and have been tested periodically for 500 h. A control device with configuration ITO/ZnO/PV2000/Ag has also been examined. After 500 h storage in air, the control device PCE has declined from 3.2\% to 1.0\%, about a 70\% degradation. In contrast, the device incorporating the solution-processed NiO layer and the hole transporting layer decays much slower, with only a 23\% degradation (4.4\%–3.4\%). In addition, the devices with and without TiO$_2$ nanorods show almost the same stability that all the devices can retain about 75\% of the device efficiency after 500 h storage. These results imply that the stability improvement is attributed to the anode-side interfacial layers, which is similar to our previous report based on the P3HT/PCBM system\cite{15}. The metal oxide and the S-P3MEET layer can serve as a barrier against water and oxygen, and therefore protect the active layer from oxidation, improving the device stability.

4. Conclusions

In conclusion, we have demonstrated the use TiO$_2$ nanorods as the additional electron collecting layer in the inverted structure.
Acknowledgment

This work was supported by the National Science Council, Taiwan, Republic of China. The NSC nos. are NSC99-2221-E-002-104-MY3 and NSC97-2221-E-002-039-MY3.

References

[22] G. Zhao, Y. He, Y. Li, 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C 60 bisadduct by device optimization, Adv. Mater. 22 (2010) 4355–4358.