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Polymer/Metal Oxide Nanocrystals Hybrid
Solar Cells

Shao-Sian Li, Yun-Yue Lin, Wei-Fang Su, and Chun-Wei Chen

Abstract—In this paper, we present two different types of poly-
mer/metal oxide nanocrystals hybrid photovoltaics. One is the
poly(3-hexylthiophene) (P3HT)/TiO2 nanorods hybrid bulk het-
erojunction (BHJ) solar cell and the other is a nanostructured
ZnO/P3HT hybrid solar cell. In a BHJ hybrid solar cell, the dis-
persed semiconducting nanocrystals lead to an increased inter-
face area between polymer and nanocrystals, which can assist
charge separation for photogenerated carriers, but at the expense
of poorly formed conducting pathways for electron transport. In
contrast, a nanostructured hybrid solar cell usually consists of
rigidly connected nanocrystals, which can provide direct pathways
for electron transport, but the interface area between polymer
and nanocrystals is limited. We have demonstrated that through
interface modification with effective molecules, the photovoltaic
performance in both device structures can be largely improved by
enhancing charge separation and suppressing interface recombi-
nation rate in the polymer/inorganic hybrids.

Index Terms—Bulk heterojunction (BHJ), nanostructured solar
cell, organic/inorganic hybrid, polymer solar cells.

I. INTRODUCTION

OVER THE past decade, polymer solar cells have been
the objects of interest in developing low-cost, large-area,

and mechanically flexible photovoltaic devices [1], [2]. Because
of the low dielectric constant of these molecular semiconduc-
tors, the photoexcitation generated coulomb-bound electron-
hole pairs (excitons) rather than free electrons and holes. An
internal field difference created by second phase of acceptor
materials is usually needed for exciton to dissociate into free
carriers. Until now, a promising power conversion efficiency of
4%–5% is based on poly(3-hexylthiophene) (P3HT)/fullerene
derivatives bulk heterojunctions (BHJs) [2], [3], which consists
of an electron-accepting network formed randomly within poly-
mer matrix (donor). An alternative type of polymer solar cell
including polymer/inorganic nanocrystal hybrid is also appeal-
ing because of relatively high electron mobility and good physi-
cal and chemical stability of inorganic nanocrystals [4]. Various
nanocrystals such as CdSe [1], [5], PbS [6], TiO2 [7]–[11],
and ZnO [12] have been successfully used in polymer/inorganic
nanocrystal hybrid solar cells. The replacement of toxic pre-
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Fig. 1. Demonstration of two different constructions of polymer solar cells.
(a) BHJ solar cell. (b) Nanostructured solar cell. Carrier transport paths were
indicated by dashed arrows. Hole transport through polymer phase and elec-
tron hop through TiO2 network pathways in BHJs or directly pass along ZnO
nanorods in nanostructured solar cells.

cursors, such as Cd, Pb, by environmentally friendly metal
oxides has also received similar interest. Two most common
device structures have been proposed to fabricate the poly-
mer/inorganic nanocrystal hybrid solar cells: 1) by blending
dispersed nanocrystals within polymer to form BHJs [8], [10],
[11]; or 2) by infiltrating polymer into rigid and well-connected
nanoporous or nanorod structures [7], [9] to form nanostruc-
tured hybrid solar cells. In a BHJ hybrid solar cell, the dispersed
semiconducting nanocrystals usually have a smaller size, which
increase the interface area between polymer and nanocrystals,
thereby assisting charge separation for photogenerated carriers,
but at the expense of poorly formed conducting pathways for
electron transport. In contrast, a nanostructured hybrid solar
cell usually consists of rigidly connected nanocrystals, which
can provide direct pathways for electron transport; however, the
interface area between polymer and nanocrystals is limited by
the larger dimension of the nanostructures. In this paper, we
would like to present the polymer/inorganic nanocrystal hybrid
solar cells consisting of two different device structures based on
the P3HT/TiO2 nanorods BHJs and nanostructured ZnO/P3HT
hybrids, as shown in Fig. 1(a) and (b), respectively.
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Fig. 2. HRTEM image of TiO2 nanorods used in this paper. TiO2 nanorods
were capped by OA originally, but were replaced by Pyr and N3 dye in the
following process.

II. POLYMER/TIO2 BHJ SOLAR CELLS

A. Preparation of Materials

The high aspect ratio anatase titanium dioxide (TiO2)
nanorods were synthesized via hydrolysis of titanium tetraiso-
propoxide, according to the literature with modification [13].
Details and results have been described in an earlier work [14].
TiO2 nanorods have a dimension of 20–40 nm in length and
4–5 nm in diameter, as was revealed by the high-resolution
transmission electron microscopy (HRTEM) image in Fig. 2(a).
Typically, the as-synthesized TiO2 nanorods are capped with in-
sulating surfactant of oleic acid (OA) consisting of a long alkyl
chain, which may act as a potential barrier for charge trans-
fer. We, therefore, carried out the interface modification to re-
place the original OA ligand using two different kinds of ligand
molecules, i.e., pyridine (Pyr) and cis–bis(4,4-dicarboxy-2,2-
bipyridine) dithiocyanato ruthenium(II) (N3 dye), respectively.
The three different kinds of surface ligands are shown schemat-
ically in Fig. 2(b).

Ligand replacement processes are as follows. First, the as-
synthesized OA end-capped TiO2 nanorods were washed three
times with ethanol to remove the OA. Then, the TiO2 nanorods
were dispersed in Pyr and left under stirring at 70 ◦C until the so-
lution turned clear. Through these procedures, the OA (original
surface ligand) was removed and the Pyr of a weak-binding lig-
and was on the surface of TiO2 nanorods. To obtain the N3 dye-
modified TiO2 nanorods, the as-synthesized OA-capped TiO2
nanorods were mixed with the dyes in an approximate 500:1
weight ratio, dispersed in pyridine, and left stirred at 75 ◦C until
the solution turned clear and purple, which is the color of N3
dye. The ligand molecule of N3 dye, consisting of carboxy-
late groups –COOH, can be attached strongly to TiO2 nanorod
surface.

Fig. 3. Structure of a complete BHJ solar cell device including ITO as anode,
PEDOT:PSS as hole transport layer, active layer consist of P3HT/TiO2 hybrids,
thin TiO2 layer as hole-blocking layer, and Al as cathode. Also shown is TEM
image of P3HT/TiO2 nanorods hybrids.

B. Device Fabrication

For the photovoltaic device fabrication, a 40-nm thick
layer of poly(3,4-ethylenedioxythiophene) (PEDOT):poly
(styrenesulfonate (PSS) (Baytron P 4083) was spin cast onto
the precleaned indium tin oxide (ITO) substrate, followed by
baking at 120 ◦C for 30 min before moving into a nitrogen-
purged glove box for subsequent depositions. The P3HT:TiO2
nanorods hybrid was composed of a 1:1 weight ratio of P3HT
(Mw ∼ 58000, polydispersity index (PDI) 1.62, Regioregular-
ity (RR) 96%) to TiO2 in 10 mg/ml solution with the mixed
solvent including pyridine, chloroform, dichloromethane, and
chlorobenzene. After the P3HT/TiO2 active layer was deposited
by spin coating, the resulting thickness was about 120 nm. The
Al electrode was deposited by thermal evaporation in a vac-
uum, under pressure of around 2×10−6 torr. The device’s area
was defined to be about 0.1 cm2 . A very thin layer of TiO2
nanorods was sandwiched between the active layer and the alu-
minum electrode to act as a hole-blocking layer [14] as well
as an optical spacer [15]. Fig. 3 shows structural schematics of
a complete BHJ device and TEM images of this hybrid mate-
rial as well. From the TEM image of P3HT/TiO2 hybrids, we
can observe that TiO2 nanorods were well dispersed in P3HT
matrix, forming a complex network for electron transport.

UV-Visible absorption spectra were obtained using Jasco
V-570 UV/Vis/NIR Spectrophotometer. The steady-state pho-
toluminescence (PL) spectra were taken by the FluoroLog-
3 spectrofluorometer (HORIBA Jobin Yvon). Time-resolved
photoluminescence (TRPL) spectroscopy was performed
with a time-correlated single photon counting spectrometer
(Picoquant, Inc.). A pulse laser (470 nm) with an average power
of 1 mW operating at 40 MHz with duration of 70 ps was used
for excitation. I–V measurements (Keithley 2410 source me-
ter) were obtained by using a solar simulator (Newport Inc.)
with the air mass (AM) 1.5 filter under irradiation intensity of
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Fig. 4. I–V characteristics of P3HT/TiO2 BHJ solar cells using different
interface ligand molecules under AM 1.5 (100 mW/cm2 ) irradiation.

100 mW/cm2 . The film thickness was measured by means of
the Veeco M6 surface profiler.

C. Results and Discussion

The I–V characteristics of the devices with different con-
figurations under simulated AM 1.5 illumination are shown in
Fig. 4. The device based on the P3HT:TiO2 nanorods (OA)
hybrid material exhibits a short-circuit current density (Jsc) of
1.67 mA/cm2 , an open-circuit voltage (Voc) of 0.65 V, and a fill
factor (FF) of 0.35, resulting in a power conversion efficiency
(η) of 0.38%. For the device based on the hybrid with TiO2
nanorods by pyridine treatment, a large increase in the FF indi-
cates that removal of insulating surfactant on the TiO2 nanorods
results in a significant improvement in the serial resistance of the
device. The performance of the device based on the P3HT:TiO2
nanorods (PYR) hybrid material exhibits a short-circuit current
density (Jsc) of 2.61 mA/cm2 , an open-circuit voltage (Voc) of
0.69 V, and a FF of 0.62, resulting in a η of 1.12%. For the device
consisting of TiO2 nanorods modified by the N3 dye molecule, a
further improvement in the device performance is found, giving
a short-circuit current density (Jsc) of 4.33 mA/cm2 , an open-
circuit voltage (Voc) of 0.78 V, and a FF of 0.65, resulting in
a η of 2.20%. It is worth noting that the amount of adsorbed
N3 dye on TiO2 nanorod surface is estimated to be low about
1.3 × 10−12 mole/cm2 of TiO2 nanorod [16] and a negligible
optical density of interface layers of these molecules in relation
to that of P3HT was also found. This result indicates that these
ligand molecules modify the interface rather than harvest light.

The interfacial molecules can 1) facilitate charge separation;
or 2) prevent back recombination at the interfaces of P3HT/TiO2
nanorod hybrids. TRPL and transient open-circuit voltage de-
cay (TOCVD) measurements were performed to examine the
two types of carrier dynamics in hybrids after interface mod-
ification. Fig. 5(a) shows the PL of P3HT/TiO2 hybrids and
suggests the occurrence of PL quenching from charge sepa-
ration. The PL quenching efficiency Q for the three samples
is QN3 > QPyr > QOA , which indicates that more efficient
charge separation can be achieved at the P3HT/TiO2 nanorods

Fig. 5. (a) PL spectrum and (b) TRPL spectroscopy of P3HT/TiO2 nanorod
hybrids following different interface modifications.

interfaces by either removing the insulating surfactant or re-
placing it with a more conductive ligand. The improved charge
separation efficiency at the P3HT/TiO2 nanorods interfaces can
also be inferred from TRPL spectroscopy. Fig. 5(b) shows the
PL decay curves for the pristine P3HT and the hybrid films
with different surface modification, respectively. The addition
of TiO2 nanorods in polymer results in a new relaxation process
that provides a further nonradiative process to the donor, and
leads to shortening of the measured lifetime τ . The measured
PL lifetime for the pristine P3HT and P3HT/TiO2 nanorods hy-
brid with OA, PYR, and N3 surfactant are τP3HT = 676 ps,
τOA = 480 ps, τPYR = 255 ps, and τN3 = 232 ps, respectively,
indicating that more efficient charge separation takes place at
the polymer/TiO2 nanorods interfaces by removing the insulat-
ing ligand OA or replacing with a more conductive ligand of
Pyr and N3 dye, consistent with the PL quenching result.

However, the effect of enhanced charge separation efficiency
alone cannot account for the significant improvement in both
Jsc and Voc of the devices upon interface modification. Accord-
ingly, TOCVD measurements were performed to determine the
recombination rate at the interfaces between polymer and TiO2
nanorods in an operating solar cell device under an open-circuit
condition. A small perturbation generated by a pulsed laser pro-
duces extra electrons and holes in hybrids. The decay of the
photovoltage that is generated by the additional carriers from
the small perturbation corresponds to the recombination rate at
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Fig. 6. Charge recombination rate constant krec versus light intensity at open-
circuit voltage determined by TOCVD measurement. Inset is the relative energy
position of N3 dye in P3HT/TiO2 BHJ solar cells.

the heterojunctions. Fig. 6 plots the charge recombination rate
constant krec versus illumination intensity under open-circuit
conditions. The recombination rates krec follow the order OA
capped sample > pyridine modified sample > N3 dye modified
samples at all light intensities, showing a good consistence with
the photovoltaic performance. The interface modifier of the N3
dye molecule acts as the most effective recombination barrier
with respect to other ligand molecules. As described earlier,
the reduced recombination rate may lead to increased electron
and hole concentrations at interfaces, increasing the difference
between the quasi-Fermi levels of electrons and holes, and ac-
counting for the observed increase in Voc upon interface mod-
ifications. Furthermore, the suppression of back recombination
at the interfaces can increase the number of carriers that can
be transported toward electrodes, as a result of improved Jsc
after interface modification. From the aforementioned result, it
is concluded that interface modifications on the TiO2 nanorod
surface can be used to improve the performance of the device
significantly by enhancing charge separation, while strongly
suppressing back recombination, which take place at P3HT and
TiO2 heterojunctions.

III. NANOSTRUCTURED ZnO/POLYMER HYBRID SOLAR CELLS

Another type of polymer/metal oxide hybrid photovoltaic de-
vice is based on nanostructured ZnO/polymer hybrid solar cells,
which can provide direct electron pathways as shown in Fig. 1.
Here, we further propose a hybrid nanostructured polymer so-
lar cell by providing more interface for exciton dissociation
based on the ZnO/P3HT:TiO2 hybrid material, as represented
in Fig. 7(c). Thicker ZnO nanorod arrays are grown on the elec-
trode surface to provide direct pathways for efficient electron
collection. The thinner TiO2 nanorods are then incorporated
into polymer to provide larger interfacial areas and more ef-
fective conduction paths for charge separation and transport,
respectively.

ZnO nanorod arrays were grown on ITO substrates covered
with a layer of very thin gold nanocrystal as catalyst and using
a low-temperature pulsed current electrolysis method, as de-

Fig. 7. SEM image of (a) ZnO nanorods grown by low-temperature process
and (b) cross section after infiltration of polymer. (c) Structural schematics of
ZnO:mer/(P3HT/TiO2 ) device.

scribed earlier [17]. Fig. 7(a) shows the typical scanning elec-
tron microscopy (SEM) image of the ZnO nanorod array. The
ZnO nanorod array exhibits an average diameter of ∼50 nm and
an average length of ∼180 nm [17], [18]. P3HT/TiO2 nanorods
hybrid was then spin cast onto ZnO nanorods substrate, and
Fig. 7(b) shows the cross-sectional SEM image after the in-
filtration of the P3HT:TiO2 nanorods hybrid. The thin active
layer with a thickness of 200 nm was used as light absorbing
and hole transporting material. The device was then followed
by spin coating a layer of PEDOT:PSS as a buffer layer and a
hole-transport layer with an effective thickness of 50 nm before
thermal evaporation of the Au top electrode. The films were then
baked in a vacuum oven for 6 h at 120 ◦C. Vapor deposition of
the Au top electrode was then carried out at a pressure around
2 × 10−6 torr.

Moreover, we had demonstrated that the interfacial recombi-
nation can be suppressed by using effective ligand molecules be-
tween polymer and inorganic nanocrystals in the above results.
We, therefore, used the organic molecule of mercurochrome
(C20H8Br2HgNa2O) as the interface modifier, which is one of
the best photosensitizer for ZnO photoanode [19] to date and
is much cheaper than the Ru-complex dyes (N3 dye). The dip-
coating process was carried out before polymer infiltration and
the optical density of adsorbed dye on the ZnO surface was
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TABLE I
DEVICE PERFORMANCE OF ZnO/P3HT AND ZnO/(P3HT/TiO2 ) HYBRID

SOLAR CELLS BEFORE AND AFTER INTERFACE MODIFICATION

Fig. 8. External quantum efficiencies of ZnO/P3HT hybrid solar cell based
on four different architectural structures.

negligible compared to that of the active layer’s, indicating that
photogenerated carriers were mainly from the active layer rather
than from mercurochrome [18].

Results of the I–V characteristics of the devices based on the
nanostructured ZnO/P3HT and nanostructured ZnO/P3HT:TiO2
hybrid had been published in [16] and [17], and the overall
device performance is summarized in Table I. After interface
modification by attaching mercurochrome molecules on ZnO
nanorod surface, both short-circuit current (Jsc) and open-circuit
voltage (Voc) of the ZnO/P3HT hybrid devices can be largely
improved. In addition, due to a short exciton diffusion length
of polymer (<20 nm) [20] with respect to an average spacing
between nanorods of ∼100 nm, as reported previously, we have
further incorporated thinner TiO2 nanorods synthesized as de-
scribed above into P3HT to increase the number of interfaces
for charge separation. Not only the exciton lifetime decreased
but also the device responding time reduced as well [17], indi-
cating that an effective transport can be achieved by this hybrid
architectural design. We have also compared the performance of
nanostructured ZnO/P3HT:TiO2 nanorod hybrid solar cells be-
fore and after interface modification as shown in Table I. A large
improvement in both short circuit current (Jsc) and open-circuit
voltage (Voc) can also be obtained after interface modification
on ZnO nanorod surface. The corresponding external quantum
efficiencies of these devices are shown in Fig. 8. The result
indicates that the organic photovoltaic performance based on
this nanoctructured hybrid materials can be largely improved
by simply incorporating thinner TiO2 nanorods into active layer

and by modifying the ZnO/P3HT interfaces with effective ligand
molecules of mercurochrome.

Devices with ZnO/P3HT:TiO2 architecture, as shown in
Fig. 7(c) provide efficient conduction pathways for electron
to be collected by bottom electrode along vertically stand-
ing ZnO nanorods, but yet resulted in a relatively lower so-
lar cell performance compared to P3HT/TiO2 BHJ solar cells.
Large dimensional ZnO nanostructure limited interface area be-
tween polymer/inorganic nanocrystals and incurred inefficient
charge separation [17], [18]. The incorporation of thinner TiO2
nanorods into P3HT/ZnO hybrid could not only highly increase
the interface area but also formed a tradeoff between number
of interface area and amount of leakage current. This leakage
current could come from the percolation of TiO2 nanocrystals
and ZnO nanorods at high TiO2 concentration. For further im-
provement of polymer/nanostructured ZnO hybrid solar cells,
size, orientation, and spacing of ZnO nanorods must be studied.

We have further carried out the TOCVD to investigate the
influence of interface modifier on the recombination rate at
ZnO nanorods/P3HT interfaces. The recombination rate krec
is, therefore, proportional to 1/τ where τ is the decay lifetime
of the transient photovoltage. It shows the photovoltage decay
curves of devices based on ZnO/P3HT:TiO2 nanorod hybrid,
before and after interface modification. The recombination rate
krec for the two devices are 1.2 × 104 s−1 (before modification)
and 4.5 × 103 s−1 (after modification), respectively [18]. The
result indicates that the interfacial layer can effectively prevent
from back recombination at P3HT/ZnO interfaces. The reduced
recombination rate may lead to increased electrons and holes
concentrations at interfaces. As a result, the difference between
the quasi-Fermi levels of electrons and holes will be increased,
which can account for the observed increased Voc after interface
modifications. The aforementioned result suggests that the in-
terface modifier of mercurochrome molecules attached on ZnO
nanorod surface can also play an important role in assisting
charge separation and preventing from back recombination at
interfaces.

IV. CONCLUSION

In summary, we have fabricated polymer/inorganic nanocrys-
tals hybrid solar cells with two types of structure: 1) P3HT/TiO2
nanorods BHJ solar cell; and 2) nanostructured ZnO/P3HT hy-
brid solar cell. The device performance is largely dependent on
nanomorphology of polymer/nanocrystal hybrid. In addition,
by interface modification with effective molecules, the photo-
voltaic performance in both device structures can be largely
improved due to enhanced charge separation and suppressed
interface recombination rate in the polymer/inorganic hybrids.
Our result provides a new route for future low-cost, environ-
mentally friendly, photovoltaic applications.
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