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This work presents an approach for improving the unfavorable vertical composition gradients of
poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl Cg; butyric acid methyl ester (PCBM) in the
photoactive layer of bulk heterojunction solar cells. The proposed method involves simply
depositing a thin layer of P3HT on top of poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate)
(PEDOT:PSS) prior to the PBHT:PCBM blend is spin coated. The results from photoluminescence
and photovoltaic measurements indicate that incorporating this P3HT layer significantly enhances
the electron blocking ability of PEDOT:PSS, the efficiency of photoinduced electron transfer and
the photocurrent of the device, resulting in an improvement of the power conversion efficiency from
3.98% to 5.05%. © 2009 American Institute of Physics. [doi:10.1063/1.3242006]

Polymer solar cells have attracted considerable attention
in recent years owing to the advantages of low cost,
mechanical flexibility, light weight, and simplicity of
fabrication.'™ Among numerous photoactive donor/acceptor
composites, the blend of poly(3-hexylthiophene) (P3HT) and
[6,6]-phenyl Cg; butyric acid methyl ester (PCBM) has been
intensively investigated in recent years because the cell
based on such composite has been shown to have a power
conversion efficiency of as high as 3%-5%.** Many studies
have demonstrated that appropriate annealing treatment™® or
the use of a high-boilin;g-point liquid as processing additive
in the coating solution” " during device fabrication is essen-
tial to obtain a high-efficiency cell. These processes focus
mainly on increasing the number and size of the crystalline
domains of P3HT and form simultaneously bi-continuous in-
terpenetrating networks of two materials to transport carriers
to electrodes. However, recent works have shown that these
procedures frequently lead to a vertical composition gradient
of PCBM and P3HT with a profile of PCBM-rich blend
near the poly(3,4-ethylenedioxythiophene):poly(styrene-
sulfonate) (PEDOT:PSS) layer and P3HT-rich blend adjacent
to the top surface of the composite film'' due to the differ-
ence between the surface energies of the two components
and the induced dipole-dipole interactions between PCBM
and the surface of the base layer.12 This vertical composition
profile is the opposite to that of the ideal donor-rich structure
close to the anode and acceptor-rich structure next to the
cathode, possibly lowering the area of the donor/acceptor
interface and charge extraction efficiency. Accordingly, sev-
eral approaches have been proposed for overcoming this
drawback, including the use of an inverted cell structure,n’13
the surface modification of the bottom layer with self-
assembled layers,11 and the sandwiching of a Cg, derivative
thin film between the donor/acceptor blend and the
cathode.'*1 Herein, we demonstrated that the insertion of a
thin P3HT layer between P3HT/PCBM composite and
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PEDOT:PSS films considerably increases the exciton disso-
ciation efficiency and effectively blocks the free electron to
the anode, increasing the photocurrent and cell efficiency.
P3HT/PCBM-based solar cells were fabricated by spin-
coating a layer of PEDOT:PSS (Baytron P VP AI4083) on a
pre-cleaned ITO glass (15 € sq~'") and drying at 140 °C for
10 min in air to yield a dried film with a thickness of ap-
proximately 40 nm. After the thus-prepared substrates had
been transferred into a nitrogen-filled glove box, a 1.0 wt %
P3HT solution in chlorobenzene was spin-coated on top of
the PEDOT:PSS at 1500 rpm for 30 s to form a 60-nm-thick
film. Subsequently, a mixed solution of P3HT and PCBM
(P3HT:PCBM=1:0.8 in weight) in chlorobenzene with a
P3HT concentration of 15 mg/ml was spun on top of the
P3HT layer. When the blend solution was dropped onto the
substrate, the pre-coated P3HT film was partially dissolved
to form a polymer-dominated mixture in the lower regions of
the coating solution. To prevent the entire dissolution of the
pristine polymer layer during coating, a high-molecular-
weight P3HT with a weight-average molecular weight (M)
of 47000 g mol™! and a polydispersity index of 1.33 was
adopted in this step. The total thickness of the P3HT and
P3HT:PCBM layers was determined using a Veeco Dektak
6M surface profiler and was about 175 nm. For comparison,
a control device was also prepared by directly coating the
P3HT/PCBM solution on top of PEDOT:PSS. The thickness
of this composite film was measured to be around 160 nm.
These films were then thermally annealed on a digitally con-
trolled hot plate at 160 °C for 10 min. After they had been
transferred into a vacuum chamber, and the chamber had
been pumped down to a vacuum of 107 torr, the films were
coated with Ca and then Al by thermal evaporation through a
shadow mask (6 mm?) to complete the devices. Figure 1(a)
schematically depicts the configuration of the device.
Figure 1 displays the electronic energy level diagram of
the device components, as well as the device structure of the
P3HT/PCBM-based solar cell in which the blend film of
P3HT:PCBM was the photoactive layer of the device. The
energy levels of P3HT were determined by electrochemical
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FIG. 1. (Color online) Layout of P3HT/PCBM-based solar cell. (a) Device
structure, comprising PEDOT:PSS and P3HT as interfacial layers and a
P3HT/PCBM active layer, sandwiched between ITO anode and calcium/
aluminum cathode. (b) Schematic energy level diagram of device
components.

cyclic voltammetry. The lowest unoccupied molecular orbital
energy level of P3HT is higher than that of PCBM, promot-
ing the blocking of the transport of electrons to the anode
from the active layer. An additional p-n junction is formed
with those PCBM molecules that reside at the bottom of the
active layer, increasing the donor-acceptor interfacial area
and then the photoinduced electron transfer efficiency.

Figure 2(a) plots the dark J-V curves of P3HT/PCBM-
based solar cells with and without a P3HT layer. The recti-
fication ratio of the control device was 5.3 X 10* at =2 V,
while the inclusion of a thin P3HT layer between
PEDOT:PSS and P3HT/PCBM effectively increased the
rectification ratio by a factor of around four to 2.2 X 10,
revealing that the P3HT-inserted cell had a higher injection
current at positive voltage and a lower leakage current at
negative voltage. Previous investigations have shown that
PEDOT:PSS is not an effective electron blocking layf:r.16
This observation implies that the P3HT layer greatly in-
creases the blocking of the transport of electrons to the anode
in the cell.

Figure 2(b) plots the J-V characteristics of P3HT/
PCBM-based solar cells with and without a P3HT layer un-
der AM1.5G illumination at an incident intensity of
100 mW/cm?2, which was calibrated using a mono-Si refer-
ence with a KGS5 filter (PV Measurements, Inc.). The control
device exhibited an open-circuit voltage (V,.) of 0.60 V, a
short-circuit current density (J,.) of 9.78 mA/cm?, a fill fac-
tor (FF) of 67.8%, and a power conversion efficiency (PCE)
of 3.98%. As expected, the presence of an extra P3HT layer
had a minor effect on the V. but, interestingly, greatly in-
creased the photocurrent of the device by approximately
20% to 12.00 mA/cm? and slightly improved the FF to
69.0%, yielding the highest power conversion efficiency
of 5.05 %. Statistical data from 20 devices showed that
the P3HT-inserted cells have a V. J,, FF, and PCE of
0.60+0.01 V, 11.83+0.36 mA/cm?, 68.1% *0.72% and
4.89% *+0.16%, respectively. This observation suggests that
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FIG. 2. (Color online) (a) Dark J-V characteristic of P3HT/PCBM-based
solar cell with and without a P3HT layer after thermal treatment and (b)
corresponding J-V curve measured under AM1.5G filtered spectral illumi-
nation at an incident intensity of 100 mW/cm?.

this P3HT layer creates new contacts with those PCBM
molecules that are distributed near the bottom of the
P3HT:PCBM film, thus increasing the rate of generation of
free carriers and the photocurrent density. Moreover, a sepa-
rate set of experiments revealed that the cell using a low-
molecular-weight P3HT (M,,=16 200) as the underlayer had
aV, of 0.60=0.01 V,aJ,of 10.11+0.28 mA/cm?, a FF
of 65.3% *2.14%, and a PCE of 3.93% *0.11%, which
were comparable to the performance of the control device.
This finding clearly demonstrates a high-molecular-weight
P3HT is essential as an effective buffer layer to increase the
short-current density and power conversion efficiency of a
cell.

Figure 3(a) presents the UV-visible spectra of the
devices with and without a P3HT layer. The P3HT/
P3HT:PCBM film has a slightly higher optical density than
the P3HT:PCBM film, suggesting that the incorporation of
P3HT layer does not contribute significantly to light harvest-
ing because the thickness (15 nm) of P3HT is much less than
that (160 nm) of P3HT:PCBM. The spectrum of P3HT/
P3HT:PCBM included more noticeable peaks at 550 and 620
nm with higher absorbance in the range of 550-660 nm than
that of P3HT:PCBM, mainly because of the high crystallinity
of pristine P3HT. Furthermore, the photoluminescence spec-
tra of both films were measured at an excitation wavelength
of 550 nm and presented in Fig. 3(b). The emission intensity
of P3HT:PCBM clearly exceeds that of P3HT/P3HT:PCBM
although the latter has higher absorbance at the excitation
wavelength. This finding further supports the hypothesis that
the presence of the P3HT layer greatly increased the interfa-
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FIG. 3. (Color online) (a) UV-visible absorption spectra and (b) photolumi-
nescence spectra of PZHT/PCBM film without a P3HT layer (filled square)
and P3HT/P3HT:PCBM film (open circle) on ITO glass.

cial area between the donor and the acceptor materials and
the efficiency of photoinduced electron transfer.

The IPCE spectra of P3HT-inserted and control cells af-
ter thermal treatment were displayed in Fig. 4. Both spectra
have similar shapes but the device with a P3HT layer exhib-
ited an IPCE of between 60% and 70% at incident wave-
lengths of between 350 and 600 nm, which are about 20%
higher than those of the control cell, and consistent with the
improvement in photocurrent in Fig. 2(b).

In conclusion, simply sandwiching a thin layer of high-
molecular-weight P3HT between PEDOT:PSS and photoac-
tive PBHT:PCBM layers greatly enhanced the short-circuit
current density of the solar device through the creation of an
extra donor/acceptor interface close to the bottom of the
composite. Additionally, this layer substantially increased the
electron blocking capability of PEDOT:PSS, leading to a
large increment of the rectification ratio of the cell. As a
result, an overall power conversion efficiency of 5.05% was
obtained under AM1.5 illumination.
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FIG. 4. (Color online) Incident photo-to-electron conversion efficiency
spectra of P3HT/PCBM-based solar cells with (open circle) and without
(filled square) a P3HT layer.
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